Rainfall and air temperature data from six meteorological stations above the Bengbu Sluice and hydrological and water resources evaluation data from the Bengbu Hydrological Station in the Huai River Basin from 1961 to...Rainfall and air temperature data from six meteorological stations above the Bengbu Sluice and hydrological and water resources evaluation data from the Bengbu Hydrological Station in the Huai River Basin from 1961 to 2008 are used to analyze the impact of changes in climatic factors on the amount of water resources in the Basin. There was a general trend of rise in its average annual air temperature, with the highest increase of 0.289℃/10a recorded at Bengbu in Anhui Province. Rising rainfall was mainly observed in the western part of the study area, while rainfall actually declined in the eastern part, i.e. the middle reaches of the Huai River. The Average rainfall in the study area was in a vaguely declining trend. In other words, the rainfall in the Basin is still much affected by natural fluctuations. On the whole, there was a trend of gradual decrease in the quantity of the Basin's water resources for the period under study. Water resources quantity is found to fall with decreasing rainfall and rising air temperature. Regression analysis is used to establish a mathematical model between water resources quantity and climatic factors (i.e. air temperature and rainfall) in order to explore the impact of climate change on water resources in the Basin. Moreover, various scenarios are set to quantitatively analyze the response of water resources to climate change. Sensitivity analysis shows that changes in rainfall have a much bigger impact on its water resources quantity than changes in its air temperature.展开更多
The over-exploitation of water resources in the Haihe River Basin (HRB) has now become a serious problem. This is clearly evidenced by the fact that many local rivers and lakes are drying up and the total amount of ...The over-exploitation of water resources in the Haihe River Basin (HRB) has now become a serious problem. This is clearly evidenced by the fact that many local rivers and lakes are drying up and the total amount of over-exploited groundwater has reached over 1000×10^8m^3. It is important to note that the exploitation of water resources in HRB was reasonable before 1979. After 1980, however, over-exploitation happened with an annual average amount of 40×10^8m^3. Both the dry season and rapid economic growth in HRB took place at the same time. Therefore, the over-exploitation of water in HRB was actually the negative result of the conjunction of a continuous dry season and rapid economic growth. So the over-exploitation would not be as serious as it is today if either of the above two stopped. After the first stage of south-to-north water transfer project, the water shortage problem in HRB could be eased for the following reasons: firstly, water transfer project will bring to the Basin 60x108m3 water resources; secondly, a wet season will come back eventually according to natural law of climate variability; finally, its agricultural and industrial use and total water consumption all have decreased from the peak value, so that the groundwater table will raise certainly and ecological water in rivers and lakes that were dried-up will be partly restored. In the future, the main problem of water resources security in HRB will include water pollution, operation risk of the south-to-north water transfer project, groundwater pollution and engineering geological hazards that may be brought by groundwater rise. The proposed countermeasures are as follows: keeping strengthening water demand management, raising water price as well as subsidies for the low- income family and improving other water related policies, preventing and dealing with water pollution seriously and getting fully prepared for the operation of south-to-north water transfer project.展开更多
This paper addresses the change of the river-lake relationship in the Huai River and its causes due to environmental change and human activities. A preliminary analysis is made from three aspects: (1) the natural geog...This paper addresses the change of the river-lake relationship in the Huai River and its causes due to environmental change and human activities. A preliminary analysis is made from three aspects: (1) the natural geographical change particularly captured by the Yellow River, (2) water conservancy project construction, and (3) socioeconomic development in the Huai River Basin. Key problems of changes in this river-lake relationship and the Huai River flood control are tackled, involving flood control and disaster alleviation ability of the Basin, engineering and non-engineering measurements applied to flood control and disaster mitigation, and water governance for adaptive management. Research shows that the Huai River is a rather complex one due to its complex geography with a hybrid wet and dry climate zoon, and higher population density. With the alternation of the river-lake relationship and socioeconomic development in the region, new problems keep arising, imposing new requirements on its sustainable water management. Thus, understanding the Huai River is a long and gradually improving process. Its future planning should keep absorbing new achievements of science and technology development, employing new technologies and methods, and gradually deepening our understanding of its fundamental principles. Water governance and adaptive water management will be new challenges and opportunities for the Basin in its river system change and flood control.展开更多
基金supported by the National Natural Sciences Foundation of China (Project Nos. 51079132 and 50679075)the Special Research Fund Project of the Chinese Ministry of Water Resources (Grant No. 200801001)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20094101110002)the National Key Scientific and Technological Project on Water Pollution Control and Treatment of China (Project No. 2009ZX07210-006)
文摘Rainfall and air temperature data from six meteorological stations above the Bengbu Sluice and hydrological and water resources evaluation data from the Bengbu Hydrological Station in the Huai River Basin from 1961 to 2008 are used to analyze the impact of changes in climatic factors on the amount of water resources in the Basin. There was a general trend of rise in its average annual air temperature, with the highest increase of 0.289℃/10a recorded at Bengbu in Anhui Province. Rising rainfall was mainly observed in the western part of the study area, while rainfall actually declined in the eastern part, i.e. the middle reaches of the Huai River. The Average rainfall in the study area was in a vaguely declining trend. In other words, the rainfall in the Basin is still much affected by natural fluctuations. On the whole, there was a trend of gradual decrease in the quantity of the Basin's water resources for the period under study. Water resources quantity is found to fall with decreasing rainfall and rising air temperature. Regression analysis is used to establish a mathematical model between water resources quantity and climatic factors (i.e. air temperature and rainfall) in order to explore the impact of climate change on water resources in the Basin. Moreover, various scenarios are set to quantitatively analyze the response of water resources to climate change. Sensitivity analysis shows that changes in rainfall have a much bigger impact on its water resources quantity than changes in its air temperature.
基金supported by the National Natural Sciences Fund of China (40971298)
文摘The over-exploitation of water resources in the Haihe River Basin (HRB) has now become a serious problem. This is clearly evidenced by the fact that many local rivers and lakes are drying up and the total amount of over-exploited groundwater has reached over 1000×10^8m^3. It is important to note that the exploitation of water resources in HRB was reasonable before 1979. After 1980, however, over-exploitation happened with an annual average amount of 40×10^8m^3. Both the dry season and rapid economic growth in HRB took place at the same time. Therefore, the over-exploitation of water in HRB was actually the negative result of the conjunction of a continuous dry season and rapid economic growth. So the over-exploitation would not be as serious as it is today if either of the above two stopped. After the first stage of south-to-north water transfer project, the water shortage problem in HRB could be eased for the following reasons: firstly, water transfer project will bring to the Basin 60x108m3 water resources; secondly, a wet season will come back eventually according to natural law of climate variability; finally, its agricultural and industrial use and total water consumption all have decreased from the peak value, so that the groundwater table will raise certainly and ecological water in rivers and lakes that were dried-up will be partly restored. In the future, the main problem of water resources security in HRB will include water pollution, operation risk of the south-to-north water transfer project, groundwater pollution and engineering geological hazards that may be brought by groundwater rise. The proposed countermeasures are as follows: keeping strengthening water demand management, raising water price as well as subsidies for the low- income family and improving other water related policies, preventing and dealing with water pollution seriously and getting fully prepared for the operation of south-to-north water transfer project.
基金The National Basic Research Program of China (2010CB428406)the National Natural Science Foundation of China (No. 41071025/40730632) & National Key Water Project (No.2009ZX07210-006)
文摘This paper addresses the change of the river-lake relationship in the Huai River and its causes due to environmental change and human activities. A preliminary analysis is made from three aspects: (1) the natural geographical change particularly captured by the Yellow River, (2) water conservancy project construction, and (3) socioeconomic development in the Huai River Basin. Key problems of changes in this river-lake relationship and the Huai River flood control are tackled, involving flood control and disaster alleviation ability of the Basin, engineering and non-engineering measurements applied to flood control and disaster mitigation, and water governance for adaptive management. Research shows that the Huai River is a rather complex one due to its complex geography with a hybrid wet and dry climate zoon, and higher population density. With the alternation of the river-lake relationship and socioeconomic development in the region, new problems keep arising, imposing new requirements on its sustainable water management. Thus, understanding the Huai River is a long and gradually improving process. Its future planning should keep absorbing new achievements of science and technology development, employing new technologies and methods, and gradually deepening our understanding of its fundamental principles. Water governance and adaptive water management will be new challenges and opportunities for the Basin in its river system change and flood control.