A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Land...A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Landsat 7 satellite data and the water depth information. Results showed that MBPNNM, which exhibited a strong capability of nonlinear mapping, allowed the water depth information in the study area to be retrieved at a relatively high level of accuracy. Affected by the sediment concentration of water in the estuary, MBPNNM enabled the retrieval of water depth of less than 5 meters accurately. However, the accuracy was not ideal for the water depths of more than 10 meters.展开更多
Major defects in forming of conical cups are wrinkles and rupture.Hydrodynamic deep drawing assisted by radial pressure(HDDRP) is a sheet hydroforming process for production of shell cups in one step.In this work,pr...Major defects in forming of conical cups are wrinkles and rupture.Hydrodynamic deep drawing assisted by radial pressure(HDDRP) is a sheet hydroforming process for production of shell cups in one step.In this work,process window diagrams(PWDs) for Al1050-O,pure copper and DIN 1623 St14 steel are obtained for HDDRP process.The PWD is determined to provide a quick assessment of part producibility for sheet hydroforming process.Finite element method is used for this purpose considering the process parameters including pressure path,and the blank material and its thickness.Numerical results are validated by experiments.It is shown that the sheets with less initial thickness and higher strength show better formability and uniformity of thickness distribution on final product.The results demonstrate that the obtained PWD can predict appropriate forming area and probability of rupture or wrinkling occurrence under different pressure loading paths.展开更多
When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stra...When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drilling field located high in an air gateway). Given the practice in the Haizi mine, the gas drainage rate can reach 73% in the middie coal group, with a gas drainage radius over 100 m.展开更多
The stretch forming and the deep-drawing processes were carried out at 300 and 673 K to determine the safe forming and fracture limits of IN625 alloy.The experimentally obtained strain-based fracture forming limit dia...The stretch forming and the deep-drawing processes were carried out at 300 and 673 K to determine the safe forming and fracture limits of IN625 alloy.The experimentally obtained strain-based fracture forming limit diagram(FFLD)was transformed into a stress-based(σ-FFLD)and effective plastic strain(EPS)vs triaxiality(η)plot to remove the excess dependency of fracture limits over the strains.For the prediction of fracture limits,seven different damage models were calibrated.The Oh model displayed the best ability to predict the fracture locus with the least absolute error.Though the experimentally obtained fracture limits have only been used for the numerical analysis,none of the considered damage models predicted the fracture strains over the entire considered range of stress triaxiality(0.33<η<0.66).The deep drawing process window helped to determine wrinkling,safe and fracture zones while drawing the cylindrical cups under different temperature and lubricating conditions.Further,the highest drawing ratio of 2 was achieved at 673 K under the lubricating condition.All the numerically predicted results of both stretch forming and deep drawing processes using the Hill 1948 anisotropic yielding function were found to be good within the acceptable range of error.展开更多
The auxiliary shaft is an important location for coal mine heating in the winter, where the main purpose of heating is to prevent icing of the shaft. Wellhead heating requires characteristics of openness, no-noise and...The auxiliary shaft is an important location for coal mine heating in the winter, where the main purpose of heating is to prevent icing of the shaft. Wellhead heating requires characteristics of openness, no-noise and big heat loads. The original coal-fired boiler heating mode causes significant waste of energy and environmental pollution due to the low efficiency of the heat exchange. Therefore, to solve these prob- lems, we will use deep mine geothermal energy to heat the wellhead by making full use of its negative pressure field and design a low-temperature water and fan-free heating system. Through numerical cal- culations we will simulate temperature fields, pressure fields and velocity fields under different air sup- ply temperatures, as well as different air supply outlet locations and varying number of radiators in the wellhead room of a new auxiliary shaft to find the proper layout and number of radiators that meet well- head anti-frost requirements from our simulation results, in order to provide guidelines for a practical engineering design. Tests on the Zhangshuanglou auxiliary shaft wellhead shows good, look promising and appear to resolve successfully the problem of high energy consumption and high pollution of well- head heating by a coal-fired boiler.展开更多
By introdming a small-caliber deep well rescue robot, a hold-hug pattern rescue mechanism was brought forward. In order to reduce the volmne, the trader-well rescue imclmnism is modularizing designed. At the same tira...By introdming a small-caliber deep well rescue robot, a hold-hug pattern rescue mechanism was brought forward. In order to reduce the volmne, the trader-well rescue imclmnism is modularizing designed. At the same tirae, the audio and video systyems, the illumination system and the ventilation system are expatiated. The rescuing robot can rescue the falling person in the deep well, it can save much manateral resources and time. It's really an ideal rescue device for the small-caliber fall.展开更多
Parametric instability of a riser is caused by fluctuation of its tension in time due to the heave motion of floating platform. Many studies have tackled the problem of parametric instability of a riser with constant ...Parametric instability of a riser is caused by fluctuation of its tension in time due to the heave motion of floating platform. Many studies have tackled the problem of parametric instability of a riser with constant tension. However, tension in the riser actually varies linearly from the top to the bottom due to the effect of gravity. This paper presents the parametric instability analysis of deepwater top-tensioned risers(TTR) considering the linearly varying tension along the length. Firstly, the governing equation of transverse motion of TTR under parametric excitation is established. This equation is reduced to a system of ordinary differential equations by using the Galerkin method. Then the parametric instability of TTR for three calculation models are investigated by applying the Floquet theory. The results show that the natural frequencies of TTR with variable tension are evidently reduced, the parametric instability zones are significantly increased and the maximum allowable amplitude of platform heave is much smaller under the same damping; The nodes and antinodes of mode shape are no longer uniformly distributed along the axial direction and the amplitude also changes with depth, which leads to coupling between the modes. The combination resonance phenomenon occurs as a result of mode coupling, which causes more serious damage.展开更多
This paper describes the use of a numerical and physical modelling study in the design of large breakwaters for a new port and dry dock complex on the southern coast of Oman. The numerical modelling was carried out to...This paper describes the use of a numerical and physical modelling study in the design of large breakwaters for a new port and dry dock complex on the southern coast of Oman. The numerical modelling was carried out to optimise the entrance channel layout with respect to wave penetration into the port and to refine design conditions for the sizing of the primary armour on the breakwaters. Wave conditions inside and outside of the port have been assessed using the 2-dimensional numerical wave penetration model MIKE21 EMS (Elliptic Mild-Slope). As part of the design process, 3D physical modelling studies were also undertaken at Delft Hydraulics in the Netherlands to confirm the stability of the armour on the trunk and roundhead of the breakwaters and to verify the influence of the deep approach channel on stability. The opportunity was taken to extend the physical model tests to assess the influence of the deep channel on wave penetration through the port entrance. The paper focuses on the influence of the deep channel on wave conditions in the entrance to the port and compares the results from the numerical and physical modelling.展开更多
基金the Key Program of National Natural Science Foundation (Project No.50339010) the Huaihe Valley 0pen Fund Project (No.Hx2007).
文摘A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Landsat 7 satellite data and the water depth information. Results showed that MBPNNM, which exhibited a strong capability of nonlinear mapping, allowed the water depth information in the study area to be retrieved at a relatively high level of accuracy. Affected by the sediment concentration of water in the estuary, MBPNNM enabled the retrieval of water depth of less than 5 meters accurately. However, the accuracy was not ideal for the water depths of more than 10 meters.
文摘Major defects in forming of conical cups are wrinkles and rupture.Hydrodynamic deep drawing assisted by radial pressure(HDDRP) is a sheet hydroforming process for production of shell cups in one step.In this work,process window diagrams(PWDs) for Al1050-O,pure copper and DIN 1623 St14 steel are obtained for HDDRP process.The PWD is determined to provide a quick assessment of part producibility for sheet hydroforming process.Finite element method is used for this purpose considering the process parameters including pressure path,and the blank material and its thickness.Numerical results are validated by experiments.It is shown that the sheets with less initial thickness and higher strength show better formability and uniformity of thickness distribution on final product.The results demonstrate that the obtained PWD can predict appropriate forming area and probability of rupture or wrinkling occurrence under different pressure loading paths.
基金Projects 2005CB221503 supported by the National Basic Research Program of China70533050 and 50674089 by the National Natural Science Foundation of China2005BA813B-3-06 by the National Tenth 5-Year Key Scientific and Technological Project
文摘When an extremely thick rock bed exists above a protected coal seam in the bending zone given the condition of a mining protective seam, this extremely thick rock bed controls the movement of the entire overlying stratum. This extremely thick rock bed, called a "main key stratum", will not subside nor break for a long time, causing lower fractures and bed separations not to close and gas can migrate to the bed separation areas along the fractures. These bed separations become gas enrichment areas. By analyzing the rule of fracture evolution and gas migration under the main key stratum after the deep protective coal seam has been mined, we propose a new gas drainage method which uses bore holes, drilled through rock and coal seams at great depths for draining pressure relief gas. In this method, the bores are located at a high level suction roadway (we can also drill them in the drilling field located high in an air gateway). Given the practice in the Haizi mine, the gas drainage rate can reach 73% in the middie coal group, with a gas drainage radius over 100 m.
基金Science and Engineering Research Board,Government of India(ECR/2016/001402)BITS-Pilani,Hyderabad Campus。
文摘The stretch forming and the deep-drawing processes were carried out at 300 and 673 K to determine the safe forming and fracture limits of IN625 alloy.The experimentally obtained strain-based fracture forming limit diagram(FFLD)was transformed into a stress-based(σ-FFLD)and effective plastic strain(EPS)vs triaxiality(η)plot to remove the excess dependency of fracture limits over the strains.For the prediction of fracture limits,seven different damage models were calibrated.The Oh model displayed the best ability to predict the fracture locus with the least absolute error.Though the experimentally obtained fracture limits have only been used for the numerical analysis,none of the considered damage models predicted the fracture strains over the entire considered range of stress triaxiality(0.33<η<0.66).The deep drawing process window helped to determine wrinkling,safe and fracture zones while drawing the cylindrical cups under different temperature and lubricating conditions.Further,the highest drawing ratio of 2 was achieved at 673 K under the lubricating condition.All the numerically predicted results of both stretch forming and deep drawing processes using the Hill 1948 anisotropic yielding function were found to be good within the acceptable range of error.
基金the National Basic Research Program of China (No.2006CB202200)the National Major Project of the Ministry of Education (No. 304005)the Program for Changjiang Scholars and Innovative Research Team in University of China (No. IRT0656)
文摘The auxiliary shaft is an important location for coal mine heating in the winter, where the main purpose of heating is to prevent icing of the shaft. Wellhead heating requires characteristics of openness, no-noise and big heat loads. The original coal-fired boiler heating mode causes significant waste of energy and environmental pollution due to the low efficiency of the heat exchange. Therefore, to solve these prob- lems, we will use deep mine geothermal energy to heat the wellhead by making full use of its negative pressure field and design a low-temperature water and fan-free heating system. Through numerical cal- culations we will simulate temperature fields, pressure fields and velocity fields under different air sup- ply temperatures, as well as different air supply outlet locations and varying number of radiators in the wellhead room of a new auxiliary shaft to find the proper layout and number of radiators that meet well- head anti-frost requirements from our simulation results, in order to provide guidelines for a practical engineering design. Tests on the Zhangshuanglou auxiliary shaft wellhead shows good, look promising and appear to resolve successfully the problem of high energy consumption and high pollution of well- head heating by a coal-fired boiler.
基金supported by the Graduate Science and Technology Innovation Fund(YCB100150)
文摘By introdming a small-caliber deep well rescue robot, a hold-hug pattern rescue mechanism was brought forward. In order to reduce the volmne, the trader-well rescue imclmnism is modularizing designed. At the same tirae, the audio and video systyems, the illumination system and the ventilation system are expatiated. The rescuing robot can rescue the falling person in the deep well, it can save much manateral resources and time. It's really an ideal rescue device for the small-caliber fall.
基金supported by the National Natural Science Foundation of China (51239008, 51279130, 51079097)Science Fund for Creative Research Groups of the National Natural Science Foundation of China (51021004)
文摘Parametric instability of a riser is caused by fluctuation of its tension in time due to the heave motion of floating platform. Many studies have tackled the problem of parametric instability of a riser with constant tension. However, tension in the riser actually varies linearly from the top to the bottom due to the effect of gravity. This paper presents the parametric instability analysis of deepwater top-tensioned risers(TTR) considering the linearly varying tension along the length. Firstly, the governing equation of transverse motion of TTR under parametric excitation is established. This equation is reduced to a system of ordinary differential equations by using the Galerkin method. Then the parametric instability of TTR for three calculation models are investigated by applying the Floquet theory. The results show that the natural frequencies of TTR with variable tension are evidently reduced, the parametric instability zones are significantly increased and the maximum allowable amplitude of platform heave is much smaller under the same damping; The nodes and antinodes of mode shape are no longer uniformly distributed along the axial direction and the amplitude also changes with depth, which leads to coupling between the modes. The combination resonance phenomenon occurs as a result of mode coupling, which causes more serious damage.
文摘This paper describes the use of a numerical and physical modelling study in the design of large breakwaters for a new port and dry dock complex on the southern coast of Oman. The numerical modelling was carried out to optimise the entrance channel layout with respect to wave penetration into the port and to refine design conditions for the sizing of the primary armour on the breakwaters. Wave conditions inside and outside of the port have been assessed using the 2-dimensional numerical wave penetration model MIKE21 EMS (Elliptic Mild-Slope). As part of the design process, 3D physical modelling studies were also undertaken at Delft Hydraulics in the Netherlands to confirm the stability of the armour on the trunk and roundhead of the breakwaters and to verify the influence of the deep approach channel on stability. The opportunity was taken to extend the physical model tests to assess the influence of the deep channel on wave penetration through the port entrance. The paper focuses on the influence of the deep channel on wave conditions in the entrance to the port and compares the results from the numerical and physical modelling.