期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
结合深层密集聚合的新冠肺炎CT图像分类方法 被引量:3
1
作者 周奇浩 张俊华 +1 位作者 普钟 张鑫 《计算机应用研究》 CSCD 北大核心 2023年第6期1857-1863,共7页
新型冠状病毒肺炎在全球范围迅速蔓延,为快速准确地对其诊断,进而阻断疫情传播链,提出一种基于深度学习的分类网络DLDA-A-DenseNet。首先将深层密集聚合结构与DenseNet-201结合,对不同阶段的特征信息聚合,以加强对病灶的识别及定位能力... 新型冠状病毒肺炎在全球范围迅速蔓延,为快速准确地对其诊断,进而阻断疫情传播链,提出一种基于深度学习的分类网络DLDA-A-DenseNet。首先将深层密集聚合结构与DenseNet-201结合,对不同阶段的特征信息聚合,以加强对病灶的识别及定位能力;其次提出高效多尺度长程注意力以细化聚合的特征;此外针对CT图像数据集类别不均衡问题,使用均衡抽样训练策略消除偏向性。在中国胸部CT图像调查研究会提供的数据集上测试,所提方法较原始DenseNet-201在准确率、召回率、精确率、F1分数和Kappa系数提高了2.24%、3.09%、2.09%、2.60%和3.48%;并在COVID-CISet图像数据集上测试,取得99.50%的最优准确率。结果表明,对比其他方法,提出的新冠肺炎CT图像分类方法充分提取了CT切片的病灶特征,具有更高的精度和良好的泛化性。 展开更多
关键词 新型冠状病毒肺炎 CT图像 深度学习 深层密集聚合 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部