期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的深层次矿化信息挖掘与集成
被引量:
20
1
作者
左仁广
《矿物岩石地球化学通报》
CAS
CSCD
北大核心
2019年第1期53-60,I0003,共9页
矿产预测的核心是对地学空间数据进行特征提取与集成融合,当前的研究热点和前沿聚焦于深层次矿化信息特征提取与集成。进入大数据时代,如何基于机器学习开展深层次矿化信息挖掘与集成是当前矿产预测的前沿领域。本文介绍了基于机器学习...
矿产预测的核心是对地学空间数据进行特征提取与集成融合,当前的研究热点和前沿聚焦于深层次矿化信息特征提取与集成。进入大数据时代,如何基于机器学习开展深层次矿化信息挖掘与集成是当前矿产预测的前沿领域。本文介绍了基于机器学习的矿产预测与评价研究的主要内容,深度学习的基本原理,以及深度学习在地球化学异常识别和多源找矿信息集成融合中的应用。研究结果表明,深度学习可有效识别和提取地球化学异常,并能对地质、地球物理、地球化学等多源地学数据进行特征提取、集成融合及找矿远景区圈定。尽管如此,如何把深度学习与地质约束有机结合,使其既能有效挖掘与集成深层次矿化信息,又符合地质认知,还需要更加深入的研究。
展开更多
关键词
矿
产预测
深层次矿化信息
大数据
深
度学习
下载PDF
职称材料
题名
基于深度学习的深层次矿化信息挖掘与集成
被引量:
20
1
作者
左仁广
机构
中国地质大学(武汉)地质过程与矿产资源国家重点实验室
出处
《矿物岩石地球化学通报》
CAS
CSCD
北大核心
2019年第1期53-60,I0003,共9页
基金
国家自然科学基金项目(41772344
41522206)
湖北省自然科学基金项目(2017CFA053)
文摘
矿产预测的核心是对地学空间数据进行特征提取与集成融合,当前的研究热点和前沿聚焦于深层次矿化信息特征提取与集成。进入大数据时代,如何基于机器学习开展深层次矿化信息挖掘与集成是当前矿产预测的前沿领域。本文介绍了基于机器学习的矿产预测与评价研究的主要内容,深度学习的基本原理,以及深度学习在地球化学异常识别和多源找矿信息集成融合中的应用。研究结果表明,深度学习可有效识别和提取地球化学异常,并能对地质、地球物理、地球化学等多源地学数据进行特征提取、集成融合及找矿远景区圈定。尽管如此,如何把深度学习与地质约束有机结合,使其既能有效挖掘与集成深层次矿化信息,又符合地质认知,还需要更加深入的研究。
关键词
矿
产预测
深层次矿化信息
大数据
深
度学习
Keywords
mineral exploration
deep-level mineralization information
big data
deep learning
分类号
P628.1 [天文地球—地质矿产勘探]
TP311.12 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的深层次矿化信息挖掘与集成
左仁广
《矿物岩石地球化学通报》
CAS
CSCD
北大核心
2019
20
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部