期刊文献+
共找到743篇文章
< 1 2 38 >
每页显示 20 50 100
基于改进卷积神经网络和射频指纹的无人机检测与识别 被引量:1
1
作者 周景贤 李希娜 《计算机应用》 CSCD 北大核心 2024年第3期876-882,共7页
针对无人机(UAV)在图像识别时易受环境干扰,而传统信号识别难以准确提取特征且实时性较差的问题,提出一种基于改进卷积神经网络(CNN)和射频(RF)指纹的无人机检测识别方法。首先,使用通用软件无线电外设(USRP)捕获环境中的无线电信号,经... 针对无人机(UAV)在图像识别时易受环境干扰,而传统信号识别难以准确提取特征且实时性较差的问题,提出一种基于改进卷积神经网络(CNN)和射频(RF)指纹的无人机检测识别方法。首先,使用通用软件无线电外设(USRP)捕获环境中的无线电信号,经过多分辨率分析获取偏差值,检测是否为无人机射频信号;其次,将检测到的无人机射频信号经过小波变换和主成分分析(PCA)处理,获得射频信号频谱,作为神经网络的输入;最后,构建轻量级残差神经网络(LRCNN),输入射频频谱进行网络训练,进行无人机的分类识别。实验结果表明,所提方法可以有效检测并识别无人机信号,平均识别精度可达84%;在信噪比(SNR)大于20 dB时,LRCNN的识别精度达到了88%,相较于支持向量机(SVM)、原始OracleCNN分别提高31和7个百分点,在识别精度和鲁棒性方面比这两种方法均有所提升。 展开更多
关键词 无人机安全 射频指纹 小波变换 注意力残差网络 卷积神经网络
下载PDF
基于卷积神经网络和残差结构单元的合同数据识别提取
2
作者 张纯 刘从军 《软件工程》 2024年第11期32-37,共6页
为提升合同中数据项识别和提取的准确率,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)和残差结构单元(Residual Building Unit,RBU)结合优化的CNN-RECR(Real Estate Transaction Contract Information Detection and Re... 为提升合同中数据项识别和提取的准确率,提出一种基于卷积神经网络(Convolutional Neural Network,CNN)和残差结构单元(Residual Building Unit,RBU)结合优化的CNN-RECR(Real Estate Transaction Contract Information Detection and Recognition Method Based on Improved Convolutional Neural Network)模型,并将其应用到不动产交易平台中合同数据项的识别提取场景。首先,针对提取特征表示能力弱等问题,设计了合同数据文本检测网络(Contract Data Text Detection Network,CDTD-Net)对合同手写文字的不同尺度特征进行提取;其次,与残差结构单元相结合,设计识别文字与识别数字模型;最后,对实例进行实验,实验结果显示CNN-RECR模型的识别准确率达到97.62%,证明本方法能有效提高模型的识别性能,为实现低成本运行奠定了基础。 展开更多
关键词 卷积神经网络 残差结构单元 合同数据 识别提取
下载PDF
基于残差卷积神经网络的网络安全态势感知方法
3
作者 李立 《现代计算机》 2024年第9期56-60,共5页
由于影响网络安全态势的因素具有多元化的特征,网络安全态势的观察值与预测值也是不断变化的。这种波动导致传统的神经网络在对其进行感知时,对应的收敛误差难以控制。提出基于残差卷积神经网络的网络安全态势感知方法研究。分别从网络... 由于影响网络安全态势的因素具有多元化的特征,网络安全态势的观察值与预测值也是不断变化的。这种波动导致传统的神经网络在对其进行感知时,对应的收敛误差难以控制。提出基于残差卷积神经网络的网络安全态势感知方法研究。分别从网络自身和攻击状态两个角度,对网络安全态势影响因素进行量化分析;再利用卷积核的权重系数对输入神经网络的整体状态参数进行加权平均,提取各网络安全态势影响因素状态。引入残差损失参数对残差卷积神经网络的池化结果进行约束,输出最终的网络安全态势值。在测试结果中:收敛误差值面对不同类型的网络流量和攻击手段表现出了较高的稳定性,且始终处于较低水平,收敛误差最大值仅为0.0345。 展开更多
关键词 残差卷积神经网络 网络安全态势感知 影响因素 量化分析 加权平均 残差损失参数 收敛误差值
下载PDF
基于改进残差神经网络的滚动轴承故障检测
4
作者 刘晓阳 刘旭 +1 位作者 陈伟 王文清 《计算机仿真》 2024年第5期81-87,共7页
针对在矿井等特殊环境下在面对运算量大的复杂算法时,传统深度学习算法由于运算量大,现场检测设备由于需要消耗大量的资源无法完成现场检测的问题,提出了一种基于改进残差神经网络的滚动轴承故障检测方法。方法通过在卷积残差块和恒等... 针对在矿井等特殊环境下在面对运算量大的复杂算法时,传统深度学习算法由于运算量大,现场检测设备由于需要消耗大量的资源无法完成现场检测的问题,提出了一种基于改进残差神经网络的滚动轴承故障检测方法。方法通过在卷积残差块和恒等残差块中加入跳跃连接,尽可能地减少了信息的损失,并且将部分残差块中的普通卷积替换成深度可分离卷积,大大降低了运算量。实验表明,改进残差神经网络能够有效地提取数据的特征信息,提高运算的速度,在解决恶劣环境下大数据量难以现场运算的同时对滚动轴承故障检测的准确率有很大提高,准确率可达99.97%。 展开更多
关键词 滚动轴承 残差神经网络 故障检测 深度可分离卷积
下载PDF
脉冲非对称卷积神经网络的图像与事件分类算法
5
作者 桑林 《黑龙江科技大学学报》 CAS 2024年第2期323-328,共6页
为了提升模型性能的同时不引入额外的计算量与能量消耗,提出了一种脉冲非对称卷积算法。利用卷积核交叉部分的权重大的特点,采用多个尺寸的卷积核替换普通卷积的单个卷积核进行卷积运算与叠加,提高中心卷积核的决策作用,在推理阶段将脉... 为了提升模型性能的同时不引入额外的计算量与能量消耗,提出了一种脉冲非对称卷积算法。利用卷积核交叉部分的权重大的特点,采用多个尺寸的卷积核替换普通卷积的单个卷积核进行卷积运算与叠加,提高中心卷积核的决策作用,在推理阶段将脉冲非对称卷积层和批量归一化层进行合并,实现简化运算。结果表明,基于脉冲非对称卷积算法的图像与事件分类模型在DVS Gesture数据集上分类精度可达98.1%,同时不引入额外的计算量和能耗。 展开更多
关键词 脉冲神经网络 类脑计算 残差学习 非对称卷积
下载PDF
基于深度可分离卷积神经网络的轴承故障诊断模型 被引量:2
6
作者 金钰森 丁飞 +2 位作者 陈竺 郑雁鹏 黄伟韬 《无线电通信技术》 北大核心 2024年第1期193-202,共10页
在现实工业环境中需要对设备故障做出快速准确的诊断,低时延和高准确度的要求使得传统卷积神经网络(Convolutional Neural Network, CNN)在故障诊断过程中受到严重制约。针对此问题,提出了一种基于深度可分离卷积神经网络(Separable Con... 在现实工业环境中需要对设备故障做出快速准确的诊断,低时延和高准确度的要求使得传统卷积神经网络(Convolutional Neural Network, CNN)在故障诊断过程中受到严重制约。针对此问题,提出了一种基于深度可分离卷积神经网络(Separable Convolutional Neural Network, SCNN)的轴承故障诊断模型,构建能够处理连续振动信号的主干CNN,通过对主干CNN中的卷积层进行可分离处理来构建SCNN,实现卷积过程的通道和区域的分离,减少卷积计算过程中所需的参数,从而降低计算时延;为SCNN引入残差层,通过残差连接来保证卷积迭代计算的准确率,避免网络层数过多而造成过拟合。为了对比所构建模型的有效性,将传统的VGG16和ResNet50网络进行一维重构来进行验证,并对分类处理后的CWRU故障轴承数据进行分析。结果显示该模型在保证识别准确率的同时有效地提高了故障诊断的效率。 展开更多
关键词 故障诊断 滚动轴承 残差神经网络 可分离卷积神经网络
下载PDF
高分辨率遥感影像建筑物提取卷积神经网络 被引量:1
7
作者 孔文学 罗亦泳 +2 位作者 陈心龙 张瑜 许超 《北京测绘》 2024年第1期44-49,共6页
针对复杂影像场景下卷积神经网络对建筑物提取效果较差的问题,本文对轻量型卷积神经网络LinkNet进行了优化调整,使用融合坐标注意力机制的深层残差网络CA-ResNet-50作为LinkNet的编码器,显著增强了网络模型的特征提取性能,提升了其在复... 针对复杂影像场景下卷积神经网络对建筑物提取效果较差的问题,本文对轻量型卷积神经网络LinkNet进行了优化调整,使用融合坐标注意力机制的深层残差网络CA-ResNet-50作为LinkNet的编码器,显著增强了网络模型的特征提取性能,提升了其在复杂场景下建筑物提取能力;同时,利用卷积分解方法对LinkNet初始块进行优化,获得了更快的网络训练速度,最终得到性能优异的建筑物提取网络CA-LinkNet。试验结果表明,在武汉大学航空建筑物数据集上CA-LinkNet与最初的LinkNet相比精度指标IoU、Kappa和F1分别提升了2.01%、1.26%和1.11%。此外,在选取的数据集上CA-LinkNet各项精度指标均优于经典分割网络,在复杂影像场景下也能有效提取建筑物,表现出较强的抗干扰能力。 展开更多
关键词 遥感影像 建筑物提取 卷积神经网络 坐标注意力机制 残差网络
下载PDF
基于深层卷积神经网络的初生仔猪目标实时检测方法 被引量:26
8
作者 沈明霞 太猛 +3 位作者 CEDRIC Okinda 刘龙申 李嘉位 孙玉文 《农业机械学报》 EI CAS CSCD 北大核心 2019年第8期270-279,共10页
针对初生仔猪目标较小、分娩栏内光线变化复杂、仔猪粘连和硬性遮挡现象较为严重等问题,提出一种基于深层卷积神经网络的初生仔猪目标识别方法。将分类和定位合并为一个任务,以整幅图像为兴趣域,利用特征金字塔网络(Feature pyramid net... 针对初生仔猪目标较小、分娩栏内光线变化复杂、仔猪粘连和硬性遮挡现象较为严重等问题,提出一种基于深层卷积神经网络的初生仔猪目标识别方法。将分类和定位合并为一个任务,以整幅图像为兴趣域,利用特征金字塔网络(Feature pyramid network,FPN)算法定位识别仔猪目标;对比了不同通道数数据集以及不同迭代次数对模型效果的影响;该方法支持图像批量处理、视频与监控录像的实时检测和检测结果多样化储存。实验结果表明:在数据集总量相同时,同时包含夜间单通道和白天3通道的数据集,在迭代20 000次时接近模型最优值。模型在验证集和测试集上的精确率分别为95.76%和93.84%,召回率分别为95.47%和94.88%,对分辨率为500像素×375像素的图像检测速度为53.19 f/s,对清晰度为720 P的视频检测速度为22 f/s,可满足实时检测的要求,对全天候多干扰场景表现出良好的泛化能力。 展开更多
关键词 初生仔猪 实时检测 深层卷积神经网络 FPN算法
下载PDF
面向农作物病害识别的高阶残差卷积神经网络研究 被引量:11
9
作者 曾伟辉 李淼 +3 位作者 张健 黄小平 王敬贤 袁媛 《中国科学技术大学学报》 CAS CSCD 北大核心 2019年第10期781-790,共10页
当前研究农作物病害的准确识别工作中,针对简单背景的农作物病害图像识别取得了巨大成功,但当面向包含有各种噪声和复杂背景真实场景的农作物病害图像识别问题时,难以满足识别准确率的要求.为此提出了一种新的面向农作物病害识别应用的... 当前研究农作物病害的准确识别工作中,针对简单背景的农作物病害图像识别取得了巨大成功,但当面向包含有各种噪声和复杂背景真实场景的农作物病害图像识别问题时,难以满足识别准确率的要求.为此提出了一种新的面向农作物病害识别应用的高阶残差卷积神经网络方法,以实现农作物病害的准确、抗干扰的识别.实验结果表明,该方法具有高准确率、强鲁棒性和良好的抗干扰能力,能较好地满足农作物病害识别的实际应用需求. 展开更多
关键词 农作物病害识别 高阶残差 鲁棒性 卷积神经网络
下载PDF
基于分数阶傅里叶变换与卷积神经网络的工业过程故障检测 被引量:2
10
作者 李元 辛梦媛 《电子测量技术》 北大核心 2024年第2期1-8,共8页
基于传统数据驱动的过程故障检测存在忽略正常数据与故障数据之间微小差异和检测不灵敏问题,本文提出了一种基于FRFT和CNN结合的故障检测方法。从放大正常数据与故障数据之间的微小差异方面入手,一则利用CVDA构造残差矩阵用于数据监测,... 基于传统数据驱动的过程故障检测存在忽略正常数据与故障数据之间微小差异和检测不灵敏问题,本文提出了一种基于FRFT和CNN结合的故障检测方法。从放大正常数据与故障数据之间的微小差异方面入手,一则利用CVDA构造残差矩阵用于数据监测,增强灵敏度;二则利用FRFT对数据进行变换,将一些幅值低,易被噪声掩盖的故障从时域转换为频域,尽可能放大其特征,使其易检测。最后利用CNN对处理完的数据进行检测,解决了忽略微小差异和检测灵敏度低的问题,通过TE过程进行实验验证,在故障检测率方面得到提高,表明所提方法的有效性。 展开更多
关键词 规范残差变量分析 分数阶傅里叶 卷积神经网络 故障检测
下载PDF
基于改进卷积神经网络的电力工程数字化校核技术研究
11
作者 周鑫 周云浩 +2 位作者 王楠 李昊 韩志超 《电子设计工程》 2024年第9期147-151,共5页
针对传统电力工程验收过程使用人工费时费力且数据质量较差的问题,文中基于改进的卷积神经网络提出了一种电力工程数字化验收校核技术。该技术将Faster R-CNN作为基础模型,从3个方面对Faster R-CNN进行改进。使用ResNet网络代替原始基... 针对传统电力工程验收过程使用人工费时费力且数据质量较差的问题,文中基于改进的卷积神经网络提出了一种电力工程数字化验收校核技术。该技术将Faster R-CNN作为基础模型,从3个方面对Faster R-CNN进行改进。使用ResNet网络代替原始基础网络,提升了算法局部特征的提取能力与运算效率。同时将K-means聚类算法与区域候选网络相结合,增强了模型的目标识别能力。再引入深度自编码网络作为预测网络,进而提高了算法的预测能力。在实验测试中,所提算法相较原始算法的准确率、召回率分别提升了3.7%和7.2%,可以对电力工程关键部件进行准确识别,有效节约了验收过程中的时间及人力成本。 展开更多
关键词 卷积神经网络 残差网络 K-MEANS聚类 深度自编码器 电力工程验收
下载PDF
基于轻量级深层卷积神经网络的花卉图像分类系统 被引量:5
12
作者 徐光柱 朱泽群 +2 位作者 尹思璐 刘高飞 雷帮军 《数据采集与处理》 CSCD 北大核心 2021年第4期756-768,共13页
为解决深层卷积神经网络(Deep convolutional neural network,DCNN)模型在算力弱、存储成本高的AI边缘计算设备上难以高效应用的现实问题,本文利用重量级网络辅助训练轻量级网络,设计了一种基于轻量级神经网络的花卉图像分类系统。首先... 为解决深层卷积神经网络(Deep convolutional neural network,DCNN)模型在算力弱、存储成本高的AI边缘计算设备上难以高效应用的现实问题,本文利用重量级网络辅助训练轻量级网络,设计了一种基于轻量级神经网络的花卉图像分类系统。首先利用重量级DCNN并结合迁移学习、爬虫技术与最大连通区域分割方法,构建了适用于轻量级网络训练的扩充花卉数据集。然后基于Tiny⁃darknet与Darknet⁃reference两种网络及扩充后的花卉数据集训练得到两种面向弱算力设备的轻量级DCNN模型。训练得到的两种花卉分类网络在Oxford102花卉数据集上的平均分类准确率可达98.07%与98.83%,模型大小分别为4 MB与28 MB,在AI边缘计算设备中具有较好的应用前景。 展开更多
关键词 花卉图像分类 深层卷积神经网络 深度学习
下载PDF
一维残差卷积神经网络的刀具磨损识别方法研究 被引量:2
13
作者 杨斌 樊志刚 +2 位作者 王建国 王民 李志星 《机械科学与技术》 CSCD 北大核心 2022年第11期1746-1752,共7页
传统的机器学习方法对于刀具磨损进行监测时需要人为提取特征,并且在刀具磨损监测过程出现所需时间较长、精度低等问题。本文提出基于一维残差卷积神经网络的刀具磨损状态识别方法。对原始振动信号进行小波包阈值降噪、快速傅里叶变换... 传统的机器学习方法对于刀具磨损进行监测时需要人为提取特征,并且在刀具磨损监测过程出现所需时间较长、精度低等问题。本文提出基于一维残差卷积神经网络的刀具磨损状态识别方法。对原始振动信号进行小波包阈值降噪、快速傅里叶变换处理后,将生成的频谱数据作为残差卷积神经网络模型的输入,通过卷积连接、残差连接和融合等操作自动进行特征提取,最后与刀具磨损状态进行匹配。结果表明:与目前常用的其它神经网络相比较,本文所提出的方法在多次测试中后平均准确率提高了0.6%,训练耗时对于频谱图输入降低30%,具有流程简单、准确率更高的特点,相比于其他方法更有优势。 展开更多
关键词 振动信号 残差连接 刀具磨损 卷积神经网络
下载PDF
全卷积多并联残差神经网络 被引量:6
14
作者 李国强 张露 《小型微型计算机系统》 CSCD 北大核心 2020年第1期30-34,共5页
随着人工智能的火热发展,深度学习已经在很多领域占有了一席之地.作为深度学习中一个典型网络--残差神经网络模型自提出之日起就成为了众多研究者的关注点.然而,残差神经网络还有很大的改进空间.为了更好地解决反向传播中梯度减小的问题... 随着人工智能的火热发展,深度学习已经在很多领域占有了一席之地.作为深度学习中一个典型网络--残差神经网络模型自提出之日起就成为了众多研究者的关注点.然而,残差神经网络还有很大的改进空间.为了更好地解决反向传播中梯度减小的问题,本文提出了一种改进的残差神经网络,称为全卷积多并联残差神经网络.在该网络中,每一层的特征信息不仅传输到下一层还输出到最后的平均池化层.为了测试该网络的性能,分别在三个数据集(MNIST,CIFAR-10和CIFAR-100)上对比图像分类的结果.实验结果表明,改进后的全卷积多并联残差神经网络与残差网络相比具有更高的分类准确率和更好的泛化能力. 展开更多
关键词 深度学习 残差神经网络 卷积多并联残差神经网络 图像分类
下载PDF
基于深度残差卷积神经网络的高光谱图像超分辨方法 被引量:4
15
作者 邹长忠 黄旭昇 《福州大学学报(自然科学版)》 CAS 北大核心 2020年第5期545-550,共6页
针对传统的稀疏表示方法的不足,提出一种基于深度残差卷积神经网络的单高光谱图像超分辨率方法,无需对应多光谱图像.研究挖掘低分辨率遥感图像和高分辨率遥感图像之间的非线性关系,构建深度残差卷积神经网络,串联多个残差块,并去除一些... 针对传统的稀疏表示方法的不足,提出一种基于深度残差卷积神经网络的单高光谱图像超分辨率方法,无需对应多光谱图像.研究挖掘低分辨率遥感图像和高分辨率遥感图像之间的非线性关系,构建深度残差卷积神经网络,串联多个残差块,并去除一些不必要的模块.充分挖掘自然图像和高光谱图像之间的相似性,利用自然图像样本训练卷积神经网络,进一步利用迁移学习将训练好的网络模型引入到高分辨率遥感图像超分辨问题上,解决训练样本缺乏问题.经实际的遥感数据超分辨实验结果表明,所提出的方法具有良好的性能,能得到较好的超分辨效果. 展开更多
关键词 高光谱图像 超分辨 深度残差卷积神经网络 残差
下载PDF
基于时间卷积脉冲神经网络的超表面信号识别
16
作者 孙娜 李毅 《天津理工大学学报》 2024年第6期87-93,共7页
近年来,随着人工智能的发展,研究人员逐渐尝试将超表面信号与深度学习相结合进行研究。为了准确高效地完成超表面信号的识别任务,提出了一种基于时间卷积脉冲神经网络(temporal convolutional spiking neural network,TCSNN)的超表面信... 近年来,随着人工智能的发展,研究人员逐渐尝试将超表面信号与深度学习相结合进行研究。为了准确高效地完成超表面信号的识别任务,提出了一种基于时间卷积脉冲神经网络(temporal convolutional spiking neural network,TCSNN)的超表面信号识别方法。TCSNN是通过在浅层全连接的脉冲神经网络上,加入时间卷积和残差结构两个模块进行构建的,然后基于超表面信号数据集,与全连接的脉冲神经网络和脉冲卷积神经网络(convolutional spiking neural network,CSNN)两个网络模型进行对比实验,对本模型的性能进行评估。实验结果表明:相较于其他两种常用的脉冲神经网络模型,提出的TCSNN可以取得最优的识别效果。总之,提出的方法不仅为光学信号识别领域的研究提供了一种新思路,而且可以对脉冲神经网络的发展起到一定推动作用。 展开更多
关键词 脉冲神经网络 时间卷积 残差结构 超表面
下载PDF
基于FastText和多尺度深层金字塔卷积神经网络的中文文本情感分类模型 被引量:2
17
作者 何颖刚 王宇 +2 位作者 夏丽丽 郭静 郑新旺 《宁德师范学院学报(自然科学版)》 2022年第4期382-388,共7页
为提高中文文本情感分类效率,提出一种基于FastText和多尺度深层金字塔卷积神经网络的文本情感分类模型.利用FastText模型构建文本向量矩阵;使用多尺寸过滤器从文本向量矩阵中提取多个特征图;融合多个特征图并输入多尺度深层金字塔卷积... 为提高中文文本情感分类效率,提出一种基于FastText和多尺度深层金字塔卷积神经网络的文本情感分类模型.利用FastText模型构建文本向量矩阵;使用多尺寸过滤器从文本向量矩阵中提取多个特征图;融合多个特征图并输入多尺度深层金字塔卷积神经网络模型进行情感分类.在中文情感挖掘语料库数据集上进行实验,多组实验对比结果表明,与其他算法相比,本文模型能有效提高文本情感分类的准确率. 展开更多
关键词 情感分类 深层金字塔卷积神经网络 FastText 词向量 多尺度
下载PDF
改进卷积神经网络的SAR图像识别方法
18
作者 罗曼 李新 《空天预警研究学报》 CSCD 2024年第3期162-166,172,共6页
针对SAR图像存在散斑噪声且各个类别的区分度不高而导致的目标特征提取难的问题,提出了一种改进卷积神经网络的SAR图像识别方法.采用不同尺度的卷积层提取SAR图像特征,设计了一种多尺度特征提取模块,充分提取图像的隐含信息;对经典的残... 针对SAR图像存在散斑噪声且各个类别的区分度不高而导致的目标特征提取难的问题,提出了一种改进卷积神经网络的SAR图像识别方法.采用不同尺度的卷积层提取SAR图像特征,设计了一种多尺度特征提取模块,充分提取图像的隐含信息;对经典的残差神经网络残差块进行改进,设计了一种密集残差块结构,为后面层提供丰富的细节信息,保证输出特征的表达能力.最后在MSTAR数据集上进行了验证.实验结果表明,本文模型在测试集上的识别率达到了99.17%,优于其他方法.对测试集加入不同比例的椒盐噪声,本文模型比其他CNN识别率高,说明本文模型具有较好的鲁棒性. 展开更多
关键词 卷积神经网络 SAR图像 多尺度特征提取模块 密集残差 鲁棒性
下载PDF
高级卷积神经网络在多分类呼吸音分析中的应用
19
作者 吴俊 《微型电脑应用》 2024年第9期210-213,217,共5页
文章旨在构建和评估基于深度学习的肺呼吸音分类器,用于区分支气管炎、慢性阻塞性肺炎、肺炎、上呼吸道感染和健康状态。采用ICBHI 2017公开数据集,通过数据增强技术和频谱特征提取,构建卷积神经网络(CNN)、深度神经网络(DNN)和残差网络... 文章旨在构建和评估基于深度学习的肺呼吸音分类器,用于区分支气管炎、慢性阻塞性肺炎、肺炎、上呼吸道感染和健康状态。采用ICBHI 2017公开数据集,通过数据增强技术和频谱特征提取,构建卷积神经网络(CNN)、深度神经网络(DNN)和残差网络(ResNet)3种模型。实验结果表明,这些模型在呼吸音分类任务中表现出色,其中,ResNet模型在所有模型中表现最佳。 展开更多
关键词 深度学习 卷积神经网络 深度神经网络 残差网络
下载PDF
一种基于深度残差卷积神经网络的歌声检测算法 被引量:2
20
作者 桂文明 吕家伟 敖志强 《金陵科技学院学报》 2021年第1期19-23,共5页
歌声检测是音乐人工智能领域重要的基础性工作,也是很多相关研究的必备技术或者增强技术。提出一种基于深度残差卷积神经网络的歌声检测算法,该算法在仅仅输入简单朴素特征的情况下,通过多层次卷积神经网络,能学习到比浅层卷积神经网络... 歌声检测是音乐人工智能领域重要的基础性工作,也是很多相关研究的必备技术或者增强技术。提出一种基于深度残差卷积神经网络的歌声检测算法,该算法在仅仅输入简单朴素特征的情况下,通过多层次卷积神经网络,能学习到比浅层卷积神经网络更多的、更有效的歌声特征,从而提高算法的整体性能。根据2种基本的残差网络结构,设计了6种不同深度的卷积神经网络,通过与基线系统的实验结果进行比较,证明了新算法的性能优于基于浅层卷积神经网络算法的性能。同时,新算法的网络深度可调性为应用增加了灵活性。 展开更多
关键词 歌声检测 残差网络 深度神经网络 卷积神经网络 循环神经网络
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部