期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
改进集成深层自编码器在轴承故障诊断中的应用 被引量:6
1
作者 陈志刚 杜小磊 +1 位作者 王衍学 张楠 《控制与决策》 EI CSCD 北大核心 2021年第1期135-142,共8页
针对滚动轴承振动信号故障特征难以自动提取和故障类别难以自动准确识别的问题,提出一种改进集成深层自编码器(IEDAE)方法.首先,改进自编码器的损失函数并设计3种小波卷积自编码器;其次,利用区分自编码器、小波卷积自编码器等5种自编码... 针对滚动轴承振动信号故障特征难以自动提取和故障类别难以自动准确识别的问题,提出一种改进集成深层自编码器(IEDAE)方法.首先,改进自编码器的损失函数并设计3种小波卷积自编码器;其次,利用区分自编码器、小波卷积自编码器等5种自编码器构造相应的深层自编码器,并设计"跨层"连接以缓解深层网络的梯度消失现象,实现对轴承振动信号的无监督预训练和有监督微调;最后,通过加权平均法输出识别结果,以保证诊断结果的准确性和稳定性.实验结果表明,改进集成深层自编码器方法能有效地对滚动轴承进行多种工况和多种故障程度的识别,较好地摆脱了对人工特征提取的依赖,特征提取能力和识别能力优于现有其他方法. 展开更多
关键词 滚动轴承 故障诊断 深层自编码器 集成学习
原文传递
基于EVMD和SODN的滚动轴承故障识别研究 被引量:3
2
作者 杨润贤 郭林炀 +3 位作者 周正平 常兆庆 李国伟 徐庆乐 《机电工程》 CAS 北大核心 2021年第10期1221-1229,共9页
在传统的滚动轴承故障识别方法中,存在对轴承振动信号的人工特征提取、选择困难的问题,提出了一种基于增强变分模态分解(EVMD)和自组织深层网络(SODN)的滚动轴承故障识别方法。首先,为了自动确定变分模态分解的模态数目,提出了一种功率... 在传统的滚动轴承故障识别方法中,存在对轴承振动信号的人工特征提取、选择困难的问题,提出了一种基于增强变分模态分解(EVMD)和自组织深层网络(SODN)的滚动轴承故障识别方法。首先,为了自动确定变分模态分解的模态数目,提出了一种功率谱的分割方法,从而提高了轴承振动信号的信噪比,并将滚动轴承的振动信号自适应分解为若干本征模态分量(IMFs);然后,根据综合评价指标,选择了较能反映轴承故障特征的IMFs分量,同时为了达到信号降噪的目的,对其进行了重构;最后,将自组织策略引入到深层自编码器中,进而构造了SODN,并将降噪后的轴承振动信号输入SODN,进行了自动特征学习与故障识别的对比实验,以验证该方法的可行性和有效性。研究结果表明:所提出的EVMD-SODN方法的轴承故障识别率达99.15%,标准差仅0.10,在故障识别率方面相比于其他组合模型具有较大优势。 展开更多
关键词 滚动轴承 故障识别 变分模态分解 自组织深层网络 深层自编码器 本征模态分量
下载PDF
城市物流竞争力分析DAE-WMA优化算法 被引量:4
3
作者 李楠 侯旋 《计算机工程与应用》 CSCD 北大核心 2019年第16期246-254,共9页
深入分析了城市物流竞争力的研究现状,结合深度学习相关理论,以深层自编码器(Deep Auto Encoder,DAE)标准模型与标准算法为基础,提出了基于Widrow函数的深层自编码器动量更新算法(DAE-WMA)。依据城市物流竞争力分析数据量特点,选取三种... 深入分析了城市物流竞争力的研究现状,结合深度学习相关理论,以深层自编码器(Deep Auto Encoder,DAE)标准模型与标准算法为基础,提出了基于Widrow函数的深层自编码器动量更新算法(DAE-WMA)。依据城市物流竞争力分析数据量特点,选取三种UCI数据集,对基于误差函数的标准算法(DAE-ESA)、基于交叉熵的标准算法(DAE-CSA)以及DAE-WMA的模式分类能力进行仿真,仿真结果表明后者的性能优于前两者。依据物流竞争实力与竞争潜力,基于层次分析法(Analytic Hierarchy Process,AHP)通过选取7个评估维度与19个评价指标构建城市物流竞争力指标体系,利用DAE-WMA方法与社会网络分析(Social Network Analysis,SNA)方法,对我国西北五省区13个主要城市的物流竞争力进行聚类分析与实证研究,仿真结果表明DAE-WMA方法相对于SNA方法,对核心节点城市的分类结果更加合理,更有利于对问题的分析。研究结果为确定新丝绸之路经济带沿线城市物流发展策略,促进国内物流业未来的协作与发展奠定了研究基础。 展开更多
关键词 物流竞争力 社会网络分析 深度学习 深层自编码器 动量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部