期刊文献+
共找到304篇文章
< 1 2 16 >
每页显示 20 50 100
基于FastText和多尺度深层金字塔卷积神经网络的中文文本情感分类模型 被引量:1
1
作者 何颖刚 王宇 +2 位作者 夏丽丽 郭静 郑新旺 《宁德师范学院学报(自然科学版)》 2022年第4期382-388,共7页
为提高中文文本情感分类效率,提出一种基于FastText和多尺度深层金字塔卷积神经网络的文本情感分类模型.利用FastText模型构建文本向量矩阵;使用多尺寸过滤器从文本向量矩阵中提取多个特征图;融合多个特征图并输入多尺度深层金字塔卷积... 为提高中文文本情感分类效率,提出一种基于FastText和多尺度深层金字塔卷积神经网络的文本情感分类模型.利用FastText模型构建文本向量矩阵;使用多尺寸过滤器从文本向量矩阵中提取多个特征图;融合多个特征图并输入多尺度深层金字塔卷积神经网络模型进行情感分类.在中文情感挖掘语料库数据集上进行实验,多组实验对比结果表明,与其他算法相比,本文模型能有效提高文本情感分类的准确率. 展开更多
关键词 情感分类 深层金字塔卷积神经网络 FastText 词向量 多尺度
下载PDF
基于卷积神经网络的毛巾瑕疵检测系统设计
2
作者 肖金壮 郭辉辉 王宁 《计算机集成制造系统》 EI CSCD 北大核心 2024年第11期3977-3983,共7页
针对毛巾表面小尺寸瑕疵和极端纵横比的经纬向瑕疵,提出基于卷积神经网络的毛巾瑕疵图像检测方法。首先采用所构建毛巾瑕疵检测系统中的面阵工业相机进行毛巾样本图像采集,从中选取150张带有瑕疵的图像,对采集的图像进行数据扩充,并制... 针对毛巾表面小尺寸瑕疵和极端纵横比的经纬向瑕疵,提出基于卷积神经网络的毛巾瑕疵图像检测方法。首先采用所构建毛巾瑕疵检测系统中的面阵工业相机进行毛巾样本图像采集,从中选取150张带有瑕疵的图像,对采集的图像进行数据扩充,并制作数据集;其次,通过融合特征金字塔网络与ResNet-50,并引入K-means聚类优化边界框宽高比,得到适用的Faster R-CNN目标检测算法;最后,用数据集进行网络训练,提取图像中的瑕疵特征,识别瑕疵目标,并对训练所得网络进行实验验证,识别检出率达到95.2%。结果表明,所提出的系统可有效实现毛巾瑕疵自动检测。 展开更多
关键词 卷积神经网络 毛巾瑕疵检测 Faster R-CNN 特征金字塔网络 K-MEANS聚类
下载PDF
基于改进卷积神经网络的心理状态预警技术
3
作者 王克 《电子设计工程》 2024年第10期49-53,共5页
针对传统问卷法难以真实反映被调查者心理状态的问题,基于光流法和卷积神经网络提出了一种微表情判断方法,并将其作为心理状态预警技术的核心模块。对于数据集中人脸数据离散的问题,该方法采用人眼权重法对图像进行预处理,且通过金字塔... 针对传统问卷法难以真实反映被调查者心理状态的问题,基于光流法和卷积神经网络提出了一种微表情判断方法,并将其作为心理状态预警技术的核心模块。对于数据集中人脸数据离散的问题,该方法采用人眼权重法对图像进行预处理,且通过金字塔光流算法提取预处理图像序列的光流特征,再利用三维卷积神经网络对该特征加以训练。与传统算法相比,所提方法在减少模型训练参数与运算时间的同时还具有更优的学习能力。实验测试结果表明,该算法在CASME数据集上的微表情识别准确率为89.2%,F1值为0.6751,均优于其他对比方法。由此证明,该算法可实现对人脸微表情的准确识别,进而为学生心理状态预警提供客观的数据支撑。 展开更多
关键词 金字塔光流法 三维卷积神经网络 微表情识别 人脸识别 心理预警
下载PDF
基于卷积神经网络特征提取的病理语音识别
4
作者 姜羽菲 石宇 +2 位作者 何若男 陈益 曹辉 《电子设计工程》 2024年第20期26-30,共5页
针对传统病理语音识别效率低的问题,提出了一种利用卷积神经网络语音特征的病理语音识别方法,实现了特征的自动提取。从原始语音信号中提取梅尔语谱图特征,并对原始图像进行数据增强。基于迁移学习的思想,对Alex Net网络进行微调和训练... 针对传统病理语音识别效率低的问题,提出了一种利用卷积神经网络语音特征的病理语音识别方法,实现了特征的自动提取。从原始语音信号中提取梅尔语谱图特征,并对原始图像进行数据增强。基于迁移学习的思想,对Alex Net网络进行微调和训练,并将图像输入到训练好的卷积神经网络中提取语句级特征,输出时由时域金字塔匹配进行统一降维,得到相同长度的语音特征。使用神经网络和支持向量机分类器分别对提取好的语音特征进行分类,以完成病理语音识别。实验结果表明,神经网络能够很好地提取复杂和抽象的特征,避免了前期复杂繁琐的数据处理和数据分析工作,同时与传统特征提取方法相比准确率有所提高。 展开更多
关键词 病理语音识别 梅尔谱图 卷积神经网络 时域金字塔匹配
下载PDF
基于卷积神经网络的路面裂缝分割设计与研究
5
作者 刘艳宁 章国宝 《应用光学》 CAS 北大核心 2024年第2期373-384,共12页
裂缝是路面病害最主要的类型,准确的裂缝分割是国家进行公路预防养护管理的重要决策依据。针对背景复杂下现有模型路面裂缝分割准确度有待提高的问题,提出一种基于卷积神经网络的端到端裂缝分割模型,使用分层结构的ConvNeXt编码器提取... 裂缝是路面病害最主要的类型,准确的裂缝分割是国家进行公路预防养护管理的重要决策依据。针对背景复杂下现有模型路面裂缝分割准确度有待提高的问题,提出一种基于卷积神经网络的端到端裂缝分割模型,使用分层结构的ConvNeXt编码器提取多尺度特征,特征的最高层使用金字塔池化模块进一步获取全局先验特征,通过具有横向连接和自上而下的金字塔结构进行特征融合。针对裂缝和背景不平衡问题,使用平衡交叉熵损失函数提高模型的检测性能。此外,构建了一个包含2 876张裂缝图片的数据集UCrack,覆盖多种裂缝类型和广泛的背景范围,以提供丰富的特征供模型学习。实验表明,在UCrack测试数据集上模型的召回率和F1得分比其他表现最佳的模型提高了2.68%和6.89%;在CrackDataset数据集上的测试取得了85.68%的召回率和80.11%的F1得分,说明模型具有较好的泛化性能,可应对背景复杂的路面裂缝分割。 展开更多
关键词 裂缝分割 卷积神经网络 编解码网络 特征金字塔 金字塔池化
下载PDF
基于改进级联卷积神经网络的织物疵点检测
6
作者 李小庆 张俊杰 +2 位作者 杜小勤 梁晶 袁桦 《计算机与数字工程》 2024年第5期1557-1562,1568,共7页
为了改进当前织物检测算法样本数量少、织物疵点检测准确率低和定位精准度差的问题,提出一种端到端的改进的织物疵点检测算法。针对公开数据集样本数量少、样本种类不均衡的问题,采用线下与线上结合的数据增广方式,除了基本的数据增广方... 为了改进当前织物检测算法样本数量少、织物疵点检测准确率低和定位精准度差的问题,提出一种端到端的改进的织物疵点检测算法。针对公开数据集样本数量少、样本种类不均衡的问题,采用线下与线上结合的数据增广方式,除了基本的数据增广方法,同时引入复制粘贴以及混合的方式对样本进行扩充与增强;针对特征提取算法提取特征不精确的问题,对特征金字塔进行改进,通过加入可变形卷积、递归特征金字塔、可切换的空洞卷积、全局语义信息的方法扩大感受野、增强语义信息。实验结果验证了算法的有效性,该算法对天池雪浪制造数据集9种布匹疵点进行检测,检测是否具有瑕疵的准确率达到97%以上,疵点定位的平均检测精度为56.7%,样本检测效率为2.4 FPS。相对于基础模型定位精准度提升了10%以上,并且检测效果满足工业上的生产需求。 展开更多
关键词 织物疵点检测 级联卷积神经网络 数据增广 递归特征金字塔 可切换空洞卷积
下载PDF
基于卷积神经网络的微地震事件识别方法研究
7
作者 李思远 訾乾龙 《计算机与数字工程》 2024年第7期1993-1997,共5页
近些年来,科学技术的发展为社会带来了可观的收益。利用深度学习进行微地震事件识别也成为了一个研究热点。非常规油气勘探开发成为当前油气资源的主要途径,非常规勘探开发又需要微地震事件识别,针对微地震事件识别,主要解决的是快速、... 近些年来,科学技术的发展为社会带来了可观的收益。利用深度学习进行微地震事件识别也成为了一个研究热点。非常规油气勘探开发成为当前油气资源的主要途径,非常规勘探开发又需要微地震事件识别,针对微地震事件识别,主要解决的是快速、准确地检测微地震事件,这对石油勘探工作有着重大意义。为解决提取特征引入不确定性等缺点,论文利用雷克子波正演生成微地震信号数据再添加高斯嗓声进行模型研究。通过对构建数据集、搭建网络模型、评价模型输出结果等步骤,实现识别方法。经过反复试验与仿真实验,用卷积神经网络的方法可以对微地震有效信号快速准确地检测以及去掉冗余信息,提高微地震有效数据传输。 展开更多
关键词 卷积神经网络 空间金字塔池化 微地震正演模拟
下载PDF
卷积神经网络在流场结构检测中的应用研究
8
作者 苏伟 秦绪国 +2 位作者 王薇 李强 刘文伶 《导弹与航天运载技术(中英文)》 CSCD 北大核心 2023年第4期137-141,共5页
针对飞行器气动设计流场结构分析需求,提出了一种基于卷积神经网络的流场结构自动检测的方法。该方法充分利用神经网络对非线性系统隐藏特征的提取能力,通过学习高维度流场结构特征建立的网络可从CFD流场仿真结果中自主检测气动设计关... 针对飞行器气动设计流场结构分析需求,提出了一种基于卷积神经网络的流场结构自动检测的方法。该方法充分利用神经网络对非线性系统隐藏特征的提取能力,通过学习高维度流场结构特征建立的网络可从CFD流场仿真结果中自主检测气动设计关心的流场结构。该方法采用监督学习和交叉验证方法对网络进行训练和验证,同时采用金字塔结构方法对待检测流场进行预处理,解决了结构检测尺度不匹配的问题并提高了检测正确率。以二维涡检测为例对方法进行了验证,最终识别了大部分区域的涡结构,结果表明该方法是有效的。该方法可进一步应用于三维分离涡、激波边界层干扰等复杂流场结构检测。 展开更多
关键词 气动设计 卷积神经网络 结构特征提取 流场结构检测 金字塔结构方法
下载PDF
基于卷积神经网络的移动网络目标跟踪与控制 被引量:4
9
作者 魏冬梅 《沈阳工业大学学报》 CAS 北大核心 2023年第3期342-347,共6页
针对移动网络目标跟踪与控制过程中易出现遮挡、形变和模糊等问题,提出了基于卷积神经网络的移动网络目标跟踪与控制方法.利用卷积神经网络构建CNN模型,在原始移动网络目标图像金字塔内,提取多尺度特征,结合滤波算法获取的移动目标响应... 针对移动网络目标跟踪与控制过程中易出现遮挡、形变和模糊等问题,提出了基于卷积神经网络的移动网络目标跟踪与控制方法.利用卷积神经网络构建CNN模型,在原始移动网络目标图像金字塔内,提取多尺度特征,结合滤波算法获取的移动目标响应图,在多模板条件下求解各层卷积特征滤波最佳参数,通过最佳参数和滤波响应获取最终响应图,根据最终响应图中响应最大值实现移动网络目标的自适应跟踪与控制.实验结果表明,所提方法平均跟踪精确度为97.18%,平均跟踪成功率为95.93%,中心位置平均误差为4.38,误差幅值较小,具有良好的目标跟踪与控制能力. 展开更多
关键词 卷积神经网络 移动网络 目标跟踪 滤波算法 特征提取 响应值 拉普拉斯滤波 高斯金字塔
下载PDF
基于深层卷积神经网络的初生仔猪目标实时检测方法 被引量:26
10
作者 沈明霞 太猛 +3 位作者 CEDRIC Okinda 刘龙申 李嘉位 孙玉文 《农业机械学报》 EI CAS CSCD 北大核心 2019年第8期270-279,共10页
针对初生仔猪目标较小、分娩栏内光线变化复杂、仔猪粘连和硬性遮挡现象较为严重等问题,提出一种基于深层卷积神经网络的初生仔猪目标识别方法。将分类和定位合并为一个任务,以整幅图像为兴趣域,利用特征金字塔网络(Feature pyramid net... 针对初生仔猪目标较小、分娩栏内光线变化复杂、仔猪粘连和硬性遮挡现象较为严重等问题,提出一种基于深层卷积神经网络的初生仔猪目标识别方法。将分类和定位合并为一个任务,以整幅图像为兴趣域,利用特征金字塔网络(Feature pyramid network,FPN)算法定位识别仔猪目标;对比了不同通道数数据集以及不同迭代次数对模型效果的影响;该方法支持图像批量处理、视频与监控录像的实时检测和检测结果多样化储存。实验结果表明:在数据集总量相同时,同时包含夜间单通道和白天3通道的数据集,在迭代20 000次时接近模型最优值。模型在验证集和测试集上的精确率分别为95.76%和93.84%,召回率分别为95.47%和94.88%,对分辨率为500像素×375像素的图像检测速度为53.19 f/s,对清晰度为720 P的视频检测速度为22 f/s,可满足实时检测的要求,对全天候多干扰场景表现出良好的泛化能力。 展开更多
关键词 初生仔猪 实时检测 深层卷积神经网络 FPN算法
下载PDF
应用掩码区域卷积神经网络的文本检测模型
11
作者 赵小薇 季明辉 +1 位作者 徐秀娟 沈家乐 《应用科学学报》 CAS CSCD 北大核心 2023年第3期527-540,共14页
要:提出一种基于掩码区域卷积神经网络的文本检测模型。首先从扩大模型感受野并尽可能保持模型效率的角度出发,针对残差神经网络中的瓶颈结构进行优化,构建基于结构优化的残差神经网络(residual network based on structural optimizati... 要:提出一种基于掩码区域卷积神经网络的文本检测模型。首先从扩大模型感受野并尽可能保持模型效率的角度出发,针对残差神经网络中的瓶颈结构进行优化,构建基于结构优化的残差神经网络(residual network based on structural optimization,ResNetSO);然后去除冗余特征以提高融合后特征质量,并将空间注意力机制应用于特征金字塔网络,构建了基于下层特征指导的特征金字塔网络(feature pyramid network based on lower feature guidance,FPNetLFG)。在两个公开数据集上的实验结果表明:包含ResNetSO和FPNetLFG两个模块的模型应用在级联区域卷积神经网络、递归特征金字塔和可切换空洞卷积的目标检测模型中,分别可以带来0.8%和0.3%左右的F1值提升,从而说明了该方法的有效性和普遍适用性。 展开更多
关键词 文本检测 掩码区域卷积神经网络 主干网络 结构优化 特征金字塔网络
下载PDF
基于特征金字塔卷积循环神经网络的故障诊断方法 被引量:10
12
作者 刘秀丽 徐小力 《上海交通大学学报》 EI CAS CSCD 北大核心 2022年第2期182-190,共9页
变工况、变载荷设备部件不同故障的特征在信号中所占比例和位置不固定,且包括大量不同场景下的原始振动信号的多尺度复杂性.对此,提出一种基于特征金字塔网络(FPN)的卷积循环神经网络(CRNN)滚动轴承故障诊断方法.利用卷积神经网络(CNN)... 变工况、变载荷设备部件不同故障的特征在信号中所占比例和位置不固定,且包括大量不同场景下的原始振动信号的多尺度复杂性.对此,提出一种基于特征金字塔网络(FPN)的卷积循环神经网络(CRNN)滚动轴承故障诊断方法.利用卷积神经网络(CNN)框架,并联CNN的卷积层和循环神经网络(RNN)中的长短时记忆(LSTM)层,形成新的CRNN,以充分利用CNN对空间域信息和RNN对时域信息的学习能力;在每一层中权值共享,减少网络参数;利用FPN构建全新特征图,输入一维信号和堆叠后形成的二维信号,对传感器采集的信号进行特征提取,实现故障诊断.利用行星齿轮箱进行故障试验,并进行5折交叉验证,该方法的诊断准确率平均值为99.20%,比基本神经网络模型至少高3.62%,表明该方法诊断精度高、鲁棒性强;利用凯斯西储大学轴承数据集进行验证,证明该方法具有良好的泛用性;利用t-SNE方法对模型的特征学习效果进行可视化分析,结果表明不同故障类别特征具有良好的聚类效果. 展开更多
关键词 卷积循环神经网络 特征金字塔 故障诊断 特征可视化
下载PDF
基于轻量级深层卷积神经网络的花卉图像分类系统 被引量:5
13
作者 徐光柱 朱泽群 +2 位作者 尹思璐 刘高飞 雷帮军 《数据采集与处理》 CSCD 北大核心 2021年第4期756-768,共13页
为解决深层卷积神经网络(Deep convolutional neural network,DCNN)模型在算力弱、存储成本高的AI边缘计算设备上难以高效应用的现实问题,本文利用重量级网络辅助训练轻量级网络,设计了一种基于轻量级神经网络的花卉图像分类系统。首先... 为解决深层卷积神经网络(Deep convolutional neural network,DCNN)模型在算力弱、存储成本高的AI边缘计算设备上难以高效应用的现实问题,本文利用重量级网络辅助训练轻量级网络,设计了一种基于轻量级神经网络的花卉图像分类系统。首先利用重量级DCNN并结合迁移学习、爬虫技术与最大连通区域分割方法,构建了适用于轻量级网络训练的扩充花卉数据集。然后基于Tiny⁃darknet与Darknet⁃reference两种网络及扩充后的花卉数据集训练得到两种面向弱算力设备的轻量级DCNN模型。训练得到的两种花卉分类网络在Oxford102花卉数据集上的平均分类准确率可达98.07%与98.83%,模型大小分别为4 MB与28 MB,在AI边缘计算设备中具有较好的应用前景。 展开更多
关键词 花卉图像分类 深层卷积神经网络 深度学习
下载PDF
基于改进空间金字塔池化卷积神经网络的交通标志识别 被引量:12
14
作者 邓天民 方芳 周臻浩 《计算机应用》 CSCD 北大核心 2020年第10期2872-2880,共9页
针对雾天、光照、遮挡和大倾角等因素导致的交通标志识别准确率低、泛化性差等问题,提出一种基于神经网络的轻量级交通标志识别方法。首先,利用图像归一化、仿射变换和限制对比度自适应直方图均衡化(CLAHE)方法进行图像预处理,以提高图... 针对雾天、光照、遮挡和大倾角等因素导致的交通标志识别准确率低、泛化性差等问题,提出一种基于神经网络的轻量级交通标志识别方法。首先,利用图像归一化、仿射变换和限制对比度自适应直方图均衡化(CLAHE)方法进行图像预处理,以提高图像质量;其次,基于卷积神经网络(CNN),融合空间金字塔结构和批量归一化(BN)方法构建改进空间金字塔池化卷积神经网络(SPPN-CNN)模型,并利用Softmax分类器实现交通标志分类;最后,选用德国交通标志识别数据集(GTSRB),对比不同图像预处理方法、模型参数和模型结构的训练效果,并验证和测试所提模型。实验结果表明,SPPN-CNN模型的识别精度达到98.04%,损失小于0.1,在低配GPU条件下识别速率大于3000 frame/s,验证了模型精度高、泛化性强、实时性好的特点。 展开更多
关键词 图像去雾 空间金字塔池化 卷积神经网络 Softmax分类器 交通标志识别
下载PDF
基于多尺度卷积神经网络的两阶段火灾识别算法研究
15
作者 张谦 张勇卫 刘琴 《消防界(电子版)》 2023年第11期126-128,共3页
基于机器视觉的火灾识别技术对于智慧消防具有极为重要的意义。针对火焰容易受到复杂背景、不同摄像角度等因素影响,本文提出一种基于多尺度卷积神经网络的火灾高精度识别算法。算法将火灾识别任务分解成前景提取与精准识别两个阶段。... 基于机器视觉的火灾识别技术对于智慧消防具有极为重要的意义。针对火焰容易受到复杂背景、不同摄像角度等因素影响,本文提出一种基于多尺度卷积神经网络的火灾高精度识别算法。算法将火灾识别任务分解成前景提取与精准识别两个阶段。在前景提取阶段,算法结合火焰运动性特点,使用帧差法对火灾候选区域进行快速提取。在精准识别阶段,算法引入空间金字塔池化模块,设计多尺度卷积神经网络进行火灾识别,实现对不同火焰尺度图像的高精度检测。在实际数据集上进行仿真实验,本文所提出算法在图像和视频领域分别取得93.6%和94.9%的火灾识别准确率,这有力证明了本文算法的有效性。 展开更多
关键词 火灾识别 多尺度卷积神经网络 空间金字塔池化 帧差法
下载PDF
基于深层卷积神经网络和双谱特征的雷达信号识别方法 被引量:27
16
作者 刘赢 田润澜 王晓峰 《系统工程与电子技术》 EI CSCD 北大核心 2019年第9期1998-2005,共8页
针对复杂电磁环境下利用人工提取特征识别雷达信号存在的主观性强、特征冗余的问题,提出了一种基于深层卷积神经网络的识别方法。该方法首先提取雷达信号的双谱信息作为深层卷积神经网络模型的输入,然后利用模型的自学习能力提取深层特... 针对复杂电磁环境下利用人工提取特征识别雷达信号存在的主观性强、特征冗余的问题,提出了一种基于深层卷积神经网络的识别方法。该方法首先提取雷达信号的双谱信息作为深层卷积神经网络模型的输入,然后利用模型的自学习能力提取深层特征,实现对不同调制样式雷达信号的识别,最后对不同结构网络模型的识别结果进行对比。仿真实验结果表明,相比传统雷达信号识别方法,该方法对于不同调制类型信号的识别效果优异,并且在识别率、抗噪性上都有所提升。 展开更多
关键词 雷达信号识别 深层卷积神经网络 特征提取 双谱
下载PDF
基于金字塔式双通道卷积神经网络的深度图像超分辨率重建 被引量:8
17
作者 于淑侠 胡良梅 +1 位作者 张骏 张旭东 《计算机应用研究》 CSCD 北大核心 2020年第8期2541-2546,共6页
针对深度图像分辨率低的问题,构建了一种金字塔式双通道深度图像超分辨率卷积神经网络。在金字塔的每一级,通过两个通道对低分辨率深度图像提取不同的有效特征,通道1为增强型残差结构,可以将丰富的图像细节传递到后面的图层,通道2将不... 针对深度图像分辨率低的问题,构建了一种金字塔式双通道深度图像超分辨率卷积神经网络。在金字塔的每一级,通过两个通道对低分辨率深度图像提取不同的有效特征,通道1为增强型残差结构,可以将丰富的图像细节传递到后面的图层,通道2将不同卷积层提取的特征连接起来作为此通道最后一层卷积层的输入,有益于局部特征和全局特征的结合。接着,通过将不同通道融合后的特征输入亚像素卷积实现超分辨率重建。实验结果表明,相比其他方法,该方法得到的超分辨率图像缓解了边缘失真和伪影问题,有较好的视觉效果。 展开更多
关键词 深度图像 超分辨率重建 双通道卷积神经网络 金字塔网络结构
下载PDF
基于空间金字塔池化和深度卷积神经网络的作物害虫识别 被引量:48
18
作者 张博 张苗辉 陈运忠 《农业工程学报》 EI CAS CSCD 北大核心 2019年第19期209-215,共7页
为了减少因作物害虫姿态多样性和尺度多样性导致其识别精度相对较低的问题,该文将空间金字塔池化与改进的YOLOv3深度卷积神经网络相结合,提出了一种基于空间金字塔池化的深度卷积神经网络农作物害虫种类识别算法,首先对测试图像上的害... 为了减少因作物害虫姿态多样性和尺度多样性导致其识别精度相对较低的问题,该文将空间金字塔池化与改进的YOLOv3深度卷积神经网络相结合,提出了一种基于空间金字塔池化的深度卷积神经网络农作物害虫种类识别算法,首先对测试图像上的害虫进行检测定位,然后对检测定位出的害虫进行种类识别。通过改进YOLOv3的网络结构,采用上采样与卷积操作相结合的方法实现反卷积,使算法能够有效地检测到图片中体型较小的作物害虫样本;通过对采集到的实际场景下20类害虫进行识别测试,识别精度均值可达到88.07%。试验结果表明,本文提出的识别算法能够有效地对作物害虫进行检测和种类识别。 展开更多
关键词 图像识别 算法 害虫分类 深度卷积神经网络 空间金字塔池化 卷积
下载PDF
基于多级金字塔卷积神经网络的快速特征表示方法 被引量:12
19
作者 王冠皓 徐军 《计算机应用研究》 CSCD 北大核心 2015年第8期2492-2495,共4页
由于在大尺度图像中卷积滤波的过程速度过慢,导致卷积神经网络(convolutional neural network,CNN)参数调节困难、训练时间过长。针对这一问题,通过对传统卷积神经网络(traditional convolution neural network,TCNN)的改进,提出一种快... 由于在大尺度图像中卷积滤波的过程速度过慢,导致卷积神经网络(convolutional neural network,CNN)参数调节困难、训练时间过长。针对这一问题,通过对传统卷积神经网络(traditional convolution neural network,TCNN)的改进,提出一种快速有效的多级金字塔卷积神经网络(multi-level pyramid CNN,MLPCNN)。这一网络使用权值共享的方法将低级的滤波权值共享到高级,保证CNN的训练只在较小尺寸的图像块上进行,加快了训练速度。实验表明,在特征维数比较低的情况下,MLPCNN提取到的特征比传统的特征提取方法更加有效,在Caltech101数据库上,MLPCNN识别率达到81.32%,而且训练速度较TCNN提高了约2.5倍。 展开更多
关键词 深度学习 多级金字塔卷积神经网络 特征表示 特征共享
下载PDF
基于空间金字塔池化的深度卷积神经网络多聚焦图像融合 被引量:10
20
作者 梅礼晔 郭晓鹏 +2 位作者 张俊华 郭正红 肖佳 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期18-27,共10页
针对传统方法需要人工设定特征和融合准则来完成融合任务,未能充分利用源图像中其他潜在有用信息的缺陷,提出一种基于空间金字塔池化网络的深度学习方法.首先,设计了一种孪生双通道卷积神经网络,并使用金字塔池化代替最大池化,学习多聚... 针对传统方法需要人工设定特征和融合准则来完成融合任务,未能充分利用源图像中其他潜在有用信息的缺陷,提出一种基于空间金字塔池化网络的深度学习方法.首先,设计了一种孪生双通道卷积神经网络,并使用金字塔池化代替最大池化,学习多聚焦图像的特征.然后,为了有效训练该网络,采用高斯滤波器合成一个大规模具有金标准的多聚焦数据集.给定一幅多聚焦图像作为输入,训练好的模型可以输出一个指示源图像中聚焦性质的得分图.此外,为了进一步提高融合效果,将得分图进一步分割为二值掩模图,并使用形态学方法对其进行优化.最后,通过在优化的二值掩模图及源图像之间使用点乘运算,将可以得到最终融合图像.实验结果表明,算法在测试集上平均量化指标提高了0.78%. 展开更多
关键词 多聚焦图像融合 卷积神经网络 金字塔池化 形态学 深度学习
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部