At present,there exist two methods used to recover the bathymetry from altimeter data,i.e.the deterministic method and the stochastic method.In this paper,the principles of the two methods are introduced first.Then ac...At present,there exist two methods used to recover the bathymetry from altimeter data,i.e.the deterministic method and the stochastic method.In this paper,the principles of the two methods are introduced first.Then according to the theory of least_square collocation,a modified statistical model for recovering bathymetry from altimeter data is proposed.The new model has been used for computing the ocean depth in the South China Sea from altimeter_derived gravity anomalies.Finally the predicted depths are compared with the ship_borne depth.It shows that they agree with each other very well.展开更多
The coarse grained(CG)model implements the molecular dynamics simulation by simplifying atom properties and interaction between them.Despite losing certain detailed information,the CG model is still the first-thought ...The coarse grained(CG)model implements the molecular dynamics simulation by simplifying atom properties and interaction between them.Despite losing certain detailed information,the CG model is still the first-thought option to study the large molecule in long time scale with less computing resource.The deep learning model mainly mimics the human studying process to handle the network input as the image to achieve a good classification and regression result.In this work,the TorchMD,a MD framework combining the CG model and deep learning model,is applied to study the protein folding process.In 3D collective variable(CV)space,the modified find density peaks algorithm is applied to cluster the conformations from the TorchMD CG simulation.The center conformation in different states is searched.And the boundary conformations between clusters are assigned.The string algorithm is applied to study the path between two states,which are compared with the end conformations from all atoms simulations.The result shows that the main phenomenon of protein folding with TorchMD CG model is the same as the all-atom simulations,but with a less simulating time scale.The workflow in this work provides another option to study the protein folding and other relative processes with the deep learning CG model.展开更多
A new algorithm is proposed for restoring disocclusion regions in depth-image-based rendering (DIBR) warped images. Current solutions include layered depth image (LDI), pre-filtering methods, and post-processing m...A new algorithm is proposed for restoring disocclusion regions in depth-image-based rendering (DIBR) warped images. Current solutions include layered depth image (LDI), pre-filtering methods, and post-processing methods. The LDI is complicated, and pre-filtering of depth images causes noticeable geometrical distortions in cases of large baseline warping. This paper presents a depth-aided inpainting method which inherits merits from Criminisi's inpainting algorithm. The proposed method features incorporation of a depth cue into texture estimation. The algorithm efficiently handles depth ambiguity by penalizing larger Lagrange multipliers of flling points closer to the warping position compared with the surrounding existing points. We perform morphological operations on depth images to accelerate the algorithm convergence, and adopt a luma-first strategy to adapt to various color sampling formats. Experiments on test multi-view sequence showed that our method has superiority in depth differentiation and geometrical loyalty in the restoration of warped images. Also, peak signal-to-noise ratio (PSNR) statistics on non-hole regions and whole image comparisons both compare favorably to those obtained by state of the art techniques.展开更多
文摘At present,there exist two methods used to recover the bathymetry from altimeter data,i.e.the deterministic method and the stochastic method.In this paper,the principles of the two methods are introduced first.Then according to the theory of least_square collocation,a modified statistical model for recovering bathymetry from altimeter data is proposed.The new model has been used for computing the ocean depth in the South China Sea from altimeter_derived gravity anomalies.Finally the predicted depths are compared with the ship_borne depth.It shows that they agree with each other very well.
基金supported by the National Natural Science Foundation of China(No.31800615 and No.21933010)。
文摘The coarse grained(CG)model implements the molecular dynamics simulation by simplifying atom properties and interaction between them.Despite losing certain detailed information,the CG model is still the first-thought option to study the large molecule in long time scale with less computing resource.The deep learning model mainly mimics the human studying process to handle the network input as the image to achieve a good classification and regression result.In this work,the TorchMD,a MD framework combining the CG model and deep learning model,is applied to study the protein folding process.In 3D collective variable(CV)space,the modified find density peaks algorithm is applied to cluster the conformations from the TorchMD CG simulation.The center conformation in different states is searched.And the boundary conformations between clusters are assigned.The string algorithm is applied to study the path between two states,which are compared with the end conformations from all atoms simulations.The result shows that the main phenomenon of protein folding with TorchMD CG model is the same as the all-atom simulations,but with a less simulating time scale.The workflow in this work provides another option to study the protein folding and other relative processes with the deep learning CG model.
基金Project supported by the National Natural Science Foundation of China (No 60802013)the Natural Science Foundation of Zhe-jiang Province, China (No Y106574)
文摘A new algorithm is proposed for restoring disocclusion regions in depth-image-based rendering (DIBR) warped images. Current solutions include layered depth image (LDI), pre-filtering methods, and post-processing methods. The LDI is complicated, and pre-filtering of depth images causes noticeable geometrical distortions in cases of large baseline warping. This paper presents a depth-aided inpainting method which inherits merits from Criminisi's inpainting algorithm. The proposed method features incorporation of a depth cue into texture estimation. The algorithm efficiently handles depth ambiguity by penalizing larger Lagrange multipliers of flling points closer to the warping position compared with the surrounding existing points. We perform morphological operations on depth images to accelerate the algorithm convergence, and adopt a luma-first strategy to adapt to various color sampling formats. Experiments on test multi-view sequence showed that our method has superiority in depth differentiation and geometrical loyalty in the restoration of warped images. Also, peak signal-to-noise ratio (PSNR) statistics on non-hole regions and whole image comparisons both compare favorably to those obtained by state of the art techniques.