期刊文献+
共找到264篇文章
< 1 2 14 >
每页显示 20 50 100
基于OOD泛化性验证和深度全连接神经网络的泥石流易发性评价方法 被引量:1
1
作者 郭鹏宁 邢会歌 +2 位作者 李从江 吴雨鑫 李海波 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第4期182-193,共12页
提升易发性评价精度有助于山区泥石流灾害早期的识别和监测预警。大部分机器学习模型在训练、测试集合上表现良好,但实际应用过程精度较差,不利于工程选址规划和防灾减灾,如何提高机器学习模型评价精度与泛化性具有重要意义。选取深度... 提升易发性评价精度有助于山区泥石流灾害早期的识别和监测预警。大部分机器学习模型在训练、测试集合上表现良好,但实际应用过程精度较差,不利于工程选址规划和防灾减灾,如何提高机器学习模型评价精度与泛化性具有重要意义。选取深度全连接神经网络,与梯度提升树、随机森林模型和贝叶斯网络等机器学习方法共同进行模型精确性评价和OOD(out-of-distribution)泛化性验证,从而找出在训练、预测和应用中均具有较高精度的方法。以四川省雅安市为例,采用小流域单元进行区域网格划分,将数据集合按7∶3比例随机分为训练集和测试集,使用经验法则(3-sigma)剔除异常数据,并基于多变量(Iterative Imputer)和K-近邻法对缺失值填充进行泥石流灾害易发性评价。在泥石流易发性因子的共线性、敏感性和预测能力的分析结果基础上,选定14个易发性因子构建模型评价指标体系,进行泥石流易发性评价与对比。通过对模型的精确性评价及OOD泛化性验证发现:深度全连接神经网络模型曲线下的面积(AUC)、准确率(Acc)、召回率(Recall)的值比梯度提升树等的计算结果分别超出了0.027、0.02、0.02,而平均绝对值误差(MAE)降低了0.003;OOD泛化性验证准确度超出了0.056。研究表明,深度全连接神经网络对于泥石流易发性评价的预测效果较好,能够提高泥石流评价的精度,增加评价的适应性,可为泥石流易发性评价提供新思路。 展开更多
关键词 泥石流灾害 易发性评价 深度学习算法 OOD泛化性验证 深度连接神经网络
下载PDF
一种基于全卷积神经网络的空中目标战术意图识别模型
2
作者 李乐民 宋亚飞 +1 位作者 王鹏 王科 《空军工程大学学报》 CSCD 北大核心 2024年第5期98-106,共9页
针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTM-FCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战... 针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTM-FCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战意图数据的时序特征。通过消融实验和对比实验结果表明,MLSTM-FCN模型在意图识别准确率、反应速度和抗干扰能力方面明显优于现有的空中目标意图识别模型,取得了sota的结果,为指挥员在进行空中作战决策时提供更有效的依据。 展开更多
关键词 意图识别 空中目标 深度学习 卷积网络 长短记忆神经网络 压缩与激励模块
下载PDF
基于深度全连接神经网络的风机叶片结冰预测方法 被引量:16
3
作者 李大中 刘家瑞 张华英 《电力科学与工程》 2019年第4期39-44,共6页
我国北方地区风电机组叶片结冰问题,对机组正常安全运行会产生严重影响。为对风电机组叶片结冰状态进行有效预测,基于风场大数据,提出一种使用深度学习算法进行优化的深度全连接神经网络的风电机组叶片结冰预测算法。将处理后的数据集... 我国北方地区风电机组叶片结冰问题,对机组正常安全运行会产生严重影响。为对风电机组叶片结冰状态进行有效预测,基于风场大数据,提出一种使用深度学习算法进行优化的深度全连接神经网络的风电机组叶片结冰预测算法。将处理后的数据集对深度全连接神经网络模型进行训练、测试、评价,最后将所得评价结果并与最近邻法(KNN)、支持向量机(SVM)、未使用深度学习优化算法的BP神经网络的预测结果进行对比。结果表明,所提出的基于深度全连接网络的风电机组叶片结冰预测算法,求取精度较高,计算量少,可以对风电机组叶片结冰预测问题进行快速有效判断。 展开更多
关键词 风场大数据 叶片结冰 深度学习 深度连接神经网络
下载PDF
从全连接网络到卷积神经网络的教学探讨 被引量:1
4
作者 谢红霞 吴明晖 《福建电脑》 2020年第7期128-132,共5页
在深度学习课程的学习中,从全连接神经网络到卷积神经网络是一个大的跨越,初学者首次接触卷积、权值共享、特征提取、池化等很多陌生的概念往往没有头绪,也很难从前面的学习内容中顺畅过渡,需要设计一条前后衔接和呼应、贯穿始终的明确... 在深度学习课程的学习中,从全连接神经网络到卷积神经网络是一个大的跨越,初学者首次接触卷积、权值共享、特征提取、池化等很多陌生的概念往往没有头绪,也很难从前面的学习内容中顺畅过渡,需要设计一条前后衔接和呼应、贯穿始终的明确主线,使学习曲线变得平缓。以经典的MNIST手写字符识别案例为引导,以识别精度提升为目标,用设问的方式,逐步深入,理解解决问题的逻辑,同时也掌握核心概念,并提炼出一条从单个神经元的最简单全连接网络到卷积神经网络的学习路径。 展开更多
关键词 深度学习 连接网络 卷积神经网络 教学设计
下载PDF
一种基于全连接神经网络的卷烟消费新流量识别模型
5
作者 张涛 洪孙焱 +2 位作者 李恒彬 何雪峰 杨蕾 《中文科技期刊数据库(全文版)经济管理》 2024年第4期0029-0033,共5页
为了简单、准确地识别烟草消费新流量,推动烟草行业高质量发展,本文结合深度学习理论,提出了一种基于全连接神经网络(FCNN)的卷烟消费新流量识别模型。首先,数据集的建立与数据预处理。调查烟草消费流量数据(包括消费者基本信息、所抽... 为了简单、准确地识别烟草消费新流量,推动烟草行业高质量发展,本文结合深度学习理论,提出了一种基于全连接神经网络(FCNN)的卷烟消费新流量识别模型。首先,数据集的建立与数据预处理。调查烟草消费流量数据(包括消费者基本信息、所抽烟的基本信息以及品牌映像等量化数据),建立数据集;从数据清洗、数据集成以及数据变换三个角度对数据进行预处理,为本文提供数据支持。其次,构建模型。使用全连接神经来构建新流量识别模型。模型的输入为卷烟的消费流量特征,输出是否为新流量;并使用训练集对神经网络卷积层模型进行训练。最后,模型的优化、评估和测试。通过对神经网络各参数的优化调整、增加训练集数据以及增加网络深度进一步优化模型,提高模型的识别准确性,准确率达到98.44%;根据模型的性能和泛化能力对模型进行评估,其损失值为0.0282根据神经网络卷积层模型,可以得出对应年龄下消费者喜欢的香烟类型、口味、种类及喜爱度,根据喜爱度判断出何种种类的香烟可以成为吸引新流量。 展开更多
关键词 神经网络 深度学习 连接神经网络 消费新流量识别
下载PDF
基于深度全卷积神经网络的大田稻穗分割 被引量:41
6
作者 段凌凤 熊雄 +2 位作者 刘谦 杨万能 黄成龙 《农业工程学报》 EI CAS CSCD 北大核心 2018年第12期202-209,共8页
稻穗的准确分割是获取水稻穗部性状、实现水稻表型自动化测量的关键。该研究应用水稻图像数据集及数据增广技术,离线训练了用于稻穗分割的3个分别基于Seg Net,Deep LAB和PSPNet的全卷积神经网络。综合考虑分割性能和计算速度,优选了基于... 稻穗的准确分割是获取水稻穗部性状、实现水稻表型自动化测量的关键。该研究应用水稻图像数据集及数据增广技术,离线训练了用于稻穗分割的3个分别基于Seg Net,Deep LAB和PSPNet的全卷积神经网络。综合考虑分割性能和计算速度,优选了基于Seg Net的网络,称为Panicle Net。在线分割阶段先将原始图像划分为子图,由Panicle Net分割子图,再拼接子图得到分割结果。比较该算法及现有作物果穗分割算法Panicle-SEG、HSeg、i2滞后阈值法及joint Seg,该算法对与训练样本同年度拍摄样本Qseg值0.76、F值0.86,不同年度样本Qseg值0.67、F值0.80,远优于次优的Panicle-SEG算法,且计算速度约为Panicle-SEG算法的35倍。该算法能克服稻穗边缘严重不规则、不同品种及生育期稻穗外观差异大、穂叶颜色混叠和复杂大田环境中光照、遮挡等因素的干扰,提升稻穗分割准确度及效率,进而服务于水稻育种栽培。 展开更多
关键词 作物 图像分割 大田水稻 稻穗分割 深度学习 卷积神经网络
下载PDF
全卷积神经网络与全连接条件随机场中的左心室射血分数精准计算 被引量:3
7
作者 刘晓鸣 雷震 +4 位作者 何刊 张惠茅 郭树旭 张歆东 李雪妍 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第3期431-438,共8页
左心室射血分数是临床上用于衡量心脏健康的一项重要指标.为提高左心室分割和射血分数计算的精度,提出一种基于改进的全卷积神经网络和全连接条件随机场的方法.首先利用预训练的全卷积神经网络模型对心脏核磁共振影像进行左心室分割并... 左心室射血分数是临床上用于衡量心脏健康的一项重要指标.为提高左心室分割和射血分数计算的精度,提出一种基于改进的全卷积神经网络和全连接条件随机场的方法.首先利用预训练的全卷积神经网络模型对心脏核磁共振影像进行左心室分割并输出概率图;之后采用3D全连接条件随机场对概率图进行后处理,完成像素级的精准密度预测;最后对左心室分割结果进行3D重建,并计算左心室舒张末期容积和收缩末期容积,进而计算出射血分数.实验结果表明,该方法能够实现左心室射血分数的精确且高效的计算,对左心室射血分数的平均预测误差为4.67%,各步骤耗时短. 展开更多
关键词 左心室射血分数计算 深度学习 卷积神经网络 连接条件随机场
下载PDF
基于深度全连接神经网络的大坝变形预测研究 被引量:17
8
作者 杨恒 岳建平 +1 位作者 邢尹 周钦坤 《大地测量与地球动力学》 CSCD 北大核心 2021年第2期162-166,共5页
将深度全连接神经网络引入大坝变形预测领域,结合大坝多源监测数据的训练样本,建立基于深度全连接神经网络的大坝变形预测模型。利用几种常见的深度优化学习算法对模型进行优化训练,通过对比各损失函数的变化曲线选取最优学习算法,进一... 将深度全连接神经网络引入大坝变形预测领域,结合大坝多源监测数据的训练样本,建立基于深度全连接神经网络的大坝变形预测模型。利用几种常见的深度优化学习算法对模型进行优化训练,通过对比各损失函数的变化曲线选取最优学习算法,进一步构建基于最优学习算法的深度全连接神经网络大坝变形预测模型;最后结合大坝多源监测数据的测试样本对模型进行检验分析,并将预测结果和传统BP神经网络的预测结果进行对比。研究结果表明,本文的深度全连接神经网络模型预测精度高、实用性强,可为大坝安全监控提供参考。 展开更多
关键词 大坝变形 连接神经网络 深度优化学习算法 预测
下载PDF
基于深度全卷积神经弹性网络WCGAN-GP模型的语音增强研究 被引量:1
9
作者 许雯婷 龚晓峰 《计算机应用与软件》 北大核心 2024年第2期130-137,共8页
Wasserstein距离生成对抗网络(Wasserstein Generative Adversal Network,WGAN)模型^([1])在语音增强中运用广泛,但存在梯度易爆炸、性能不稳定等问题。引入梯度惩罚(Gradient Penalty,GP)和弹性网络条件约束,并将生成器和判别器优化成... Wasserstein距离生成对抗网络(Wasserstein Generative Adversal Network,WGAN)模型^([1])在语音增强中运用广泛,但存在梯度易爆炸、性能不稳定等问题。引入梯度惩罚(Gradient Penalty,GP)和弹性网络条件约束,并将生成器和判别器优化成深度全卷积神经网络(Deep Fully Convolutional Neural Networks,DFCNN)结构,提出一种基于DFCNN的弹性网络条件梯度惩罚(Wasserstein Conditional Generative Adversal Network Gradient Penalty,WCGAN-GP)模型。改进后的模型可以达到真实Lipschitz限制条件,提高了可控性、稳定性和特征提取能力,能更快优化训练。实验将改进后的模型与WGAN对不同噪声条件下的语音进行增强,结果证实了改进后的模型在语音增强方面的优越性。 展开更多
关键词 Wasserstein距离 深度卷积神经网络 梯度惩罚 弹性网络 条件约束
下载PDF
面向深度卷积神经网络的确定性连接丢弃算法 被引量:1
10
作者 李鸿杨 潘静 +1 位作者 何宇清 庞彦伟 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第2期32-37,共6页
针对深度卷积神经网络中存在的过拟合问题,本文提出了一种确定性连接丢弃的正则化方法。核心思想是根据不同卷积滤波器权重对结果的贡献度不同,确定性丢弃卷积层层间连接,通过降低卷积滤波器权重的空间维度,使得卷积神经网络各层之间的... 针对深度卷积神经网络中存在的过拟合问题,本文提出了一种确定性连接丢弃的正则化方法。核心思想是根据不同卷积滤波器权重对结果的贡献度不同,确定性丢弃卷积层层间连接,通过降低卷积滤波器权重的空间维度,使得卷积神经网络各层之间的连接更稀疏。通过将算法应用于图像分类任务来验证算法的性能,在MNIST、CIFAR-10和CIFAR-100数据集上,错误率分别为0.32%、5.33%、26.88%,相比于原始实验错误率分别降低0.15%、1.09%、1.36%。实验表明,本算法能够有效处理深度卷积神经网络的过拟合问题,并能提升网络的鲁棒性和泛化能力。 展开更多
关键词 深度学习 卷积神经网络 正则化 连接丢弃
下载PDF
基于全卷积神经网络的肝脏CT影像分割研究 被引量:24
11
作者 郭树旭 马树志 +6 位作者 李晶 张惠茅 孙长建 金兰依 刘晓鸣 刘奇楠 李雪妍 《计算机工程与应用》 CSCD 北大核心 2017年第18期126-131,共6页
针对腹部CT影像邻近器官对比度较低及因个体肝脏形状差异较大等引起肝脏分割困难的问题,提出了全卷积神经网络肝脏分割模型。首先通过卷积神经网络提取图像深层、抽象的特征,再通过反卷积运算对提取到的特征映射进行插值重构后得到分割... 针对腹部CT影像邻近器官对比度较低及因个体肝脏形状差异较大等引起肝脏分割困难的问题,提出了全卷积神经网络肝脏分割模型。首先通过卷积神经网络提取图像深层、抽象的特征,再通过反卷积运算对提取到的特征映射进行插值重构后得到分割结果。由于单纯进行反卷积得到的分割结果往往比较粗糙,因此,在反卷积之前,先融合高层与低层的特征,并且通过增加反卷积的层数、减少反卷积步长,得到了更为精确的分割结果。与传统卷积神经网络的分割方法相比,该模型可以充分利用CT影像的空间信息。实验数据表明该模型能够使腹部CT影像肝脏分割具有较高的精度。 展开更多
关键词 深度学习 卷积神经网络 医学图像分割
下载PDF
基于全卷积神经网络的林木图像分割 被引量:9
12
作者 黄英来 刘亚檀 任洪娥 《计算机工程与应用》 CSCD 北大核心 2019年第4期219-224,共6页
针对传统方法进行图像分割易受噪声影响问题,提出了一种基于全卷积神经网络的林木图像分割方法。该方法不需要对图像进行预处理,利用上池化和反卷积层恢复图像分辨率,采用跳跃连接降低网络复杂度,同时避免了梯度消失问题,使用Dropout正... 针对传统方法进行图像分割易受噪声影响问题,提出了一种基于全卷积神经网络的林木图像分割方法。该方法不需要对图像进行预处理,利用上池化和反卷积层恢复图像分辨率,采用跳跃连接降低网络复杂度,同时避免了梯度消失问题,使用Dropout正则化随机激活网络隐藏单元以防止过拟合,后端结合全连接的条件随机场以恢复对象边缘的细节信息,进一步优化分割结果。该模型能够在林木图像上实现良好的分割。 展开更多
关键词 卷积神经网络 跳跃连接 条件随机场 图像分割
下载PDF
基于深度全连接神经网络的储层有效砂体厚度预测 被引量:2
13
作者 贺婷 周宁 吴啸宇 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2023年第4期1262-1274,共13页
河道砂是重要的油气储集体之一,实现砂体厚度的定量预测是提高油气开发效率的关键。随着目标储层非匀质性的增强,地震属性与储层岩性、物性、孔隙流体之间的关系更趋复杂。如何在地质信息有限的情况下实现高效且智能的复杂储层定量预测... 河道砂是重要的油气储集体之一,实现砂体厚度的定量预测是提高油气开发效率的关键。随着目标储层非匀质性的增强,地震属性与储层岩性、物性、孔隙流体之间的关系更趋复杂。如何在地质信息有限的情况下实现高效且智能的复杂储层定量预测是目前储层预测领域的热点和难点。为了实现对致密砂岩储层的高精度智能化预测,本文提出基于深度全连接神经网络的储层有效砂体厚度预测方法。该方法通过构建多层堆叠的全连接神经网络逐层优化针对储层有效砂体厚度预测的地震属性,并将优化后的属性直接映射为砂体厚度。首先针对模型数据分析了训练样本对全连接神经网络建模的影响,然后在小样本情况下分别对比了该网络的深、浅层形态在网络规模大于训练样本数目及网络规模小于训练样本数目时的表现差异,发现当训练样本为小样本时,深层网络表现优于浅层网络,前提是训练样本数目大于网络规模。最后,我们将深度全连接神经网络用于胜利油田某区实际数据的有效砂体厚度预测,应用效果显示该方法对致密砂岩储层中4 m左右的砂体实现了有效识别,体现了该端到端智能建模方法从地震属性中挖掘潜藏地质信息的能力,证实了其在储层定量预测中的有效性。 展开更多
关键词 深度连接神经网络 致密砂岩 储层参数 地震属性 有效砂体厚度 小样本
下载PDF
基于全连接神经网络方法的日最高气温预报 被引量:17
14
作者 赵琳娜 卢姝 +2 位作者 齐丹 许东蓓 应爽 《应用气象学报》 CSCD 北大核心 2022年第3期257-269,共13页
为了考察辅助变量、时间滞后变量设置的重要性和神经网络中嵌入层对分类变量处理的有效性,利用2015年1月15日-2020年12月31日欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)高分辨率模式(high resolu... 为了考察辅助变量、时间滞后变量设置的重要性和神经网络中嵌入层对分类变量处理的有效性,利用2015年1月15日-2020年12月31日欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)高分辨率模式(high resolution,HRES)输出产品及中国2238个国家级地面气象站基本气象要素数据集,在全连接神经网络基础上设计4个试验,构建24 h最高气温预报神经网络模型。结果表明:加入辅助变量、时间滞后变量的特征和带有嵌入层的全连接神经网络结构的深度学习神经网络模型对HRES日最高气温预报误差均有订正效果,均方根误差降低29.72%~47.82%,温度预报准确率提高16.67%~38.89%。加入经过嵌入层处理的辅助变量后,可显著提高青藏高原中南部和西南地区东部的平均绝对偏差不超过2℃的正技巧站点比例(比仅用HRES预报因子建模分别提高21.74%和14.17%),在此基础上加入时间滞后变量显著提高上述两个地区的平均绝对偏差不超过2℃的正技巧站点比例(比仅用HRES预报因子建模分别提高40.98%和20.33%),且预报性能更加稳定。 展开更多
关键词 深度学习 嵌入层 连接神经网络 日最高气温
下载PDF
全卷积多并联残差神经网络 被引量:6
15
作者 李国强 张露 《小型微型计算机系统》 CSCD 北大核心 2020年第1期30-34,共5页
随着人工智能的火热发展,深度学习已经在很多领域占有了一席之地.作为深度学习中一个典型网络--残差神经网络模型自提出之日起就成为了众多研究者的关注点.然而,残差神经网络还有很大的改进空间.为了更好地解决反向传播中梯度减小的问题... 随着人工智能的火热发展,深度学习已经在很多领域占有了一席之地.作为深度学习中一个典型网络--残差神经网络模型自提出之日起就成为了众多研究者的关注点.然而,残差神经网络还有很大的改进空间.为了更好地解决反向传播中梯度减小的问题,本文提出了一种改进的残差神经网络,称为全卷积多并联残差神经网络.在该网络中,每一层的特征信息不仅传输到下一层还输出到最后的平均池化层.为了测试该网络的性能,分别在三个数据集(MNIST,CIFAR-10和CIFAR-100)上对比图像分类的结果.实验结果表明,改进后的全卷积多并联残差神经网络与残差网络相比具有更高的分类准确率和更好的泛化能力. 展开更多
关键词 深度学习 残差神经网络 卷积多并联残差神经网络 图像分类
下载PDF
联合中间层的深度卷积神经网络模型 被引量:1
16
作者 袁明新 张丽民 +2 位作者 朱友帅 姜烽 江亚峰 《计算机工程与应用》 CSCD 北大核心 2018年第20期139-144,共6页
针对当前卷积神经网络(Convolutional Neural Networks,CNN)模型通常将网络最后一层的输出作为特征表示,未能充分利用网络中间层的不足,提出了一种联合中间层的CNN模型(Intermediate Layers Connected-CNN,ILC-CNN)。该模型以AlexNet为... 针对当前卷积神经网络(Convolutional Neural Networks,CNN)模型通常将网络最后一层的输出作为特征表示,未能充分利用网络中间层的不足,提出了一种联合中间层的CNN模型(Intermediate Layers Connected-CNN,ILC-CNN)。该模型以AlexNet为基础,首先联合前、中、末端卷积层,通过深度连接方式连接;接着通过池化层、全连接层等操作得到描述图像的特征向量;通过辅助分类器训练方式保证了中间层特征的有效性,使模型得以成功训练。测试结果表明,该模型在图像分类与识别任务中效果显著,其提取的特征更具辨识度,具有比其他模型更高的识别精度。 展开更多
关键词 图像分类 图像识别 卷积神经网络 深度连接 中间层
下载PDF
一种基于U型全卷积神经网络的深度估计模型
17
作者 王小康 付小宁 《计算机科学与应用》 2019年第2期250-255,共6页
本文解决了从单张图像估计深度信息的问题。单张图像与深度图之间的映射是是模棱两可的,它需要全局信息和局部信息。本文部署了一个全卷积U型神经网络,它用预训练的ResNet-50网络提取图像特征,然后用残差上采样模块将特征图恢复到深度... 本文解决了从单张图像估计深度信息的问题。单张图像与深度图之间的映射是是模棱两可的,它需要全局信息和局部信息。本文部署了一个全卷积U型神经网络,它用预训练的ResNet-50网络提取图像特征,然后用残差上采样模块将特征图恢复到深度图的尺寸大小,并且使用了跳跃链接,整个网络呈现U型,从而对全局信息和局部信息进行融合。整个网络可以进行端到端的训练。 展开更多
关键词 单目深度估计 卷积神经网络 残差上采样 跳跃链接
下载PDF
基于全卷积神经网络的高分辨率航空影像建筑物提取方法研究 被引量:10
18
作者 朱岩彬 徐启恒 +1 位作者 杨俊涛 莫海林 《地理信息世界》 2020年第2期101-106,共6页
随着高分辨率航空影像空间分辨率的提高,地物纹理信息变得更加丰富和复杂,使得从高分辨影像中提取建筑物信息面临巨大挑战。因此采用一种基于全卷积神经网络的高分辨率航空影像中建筑物提取方法,实现端到端的建筑物位置等信息提取。整... 随着高分辨率航空影像空间分辨率的提高,地物纹理信息变得更加丰富和复杂,使得从高分辨影像中提取建筑物信息面临巨大挑战。因此采用一种基于全卷积神经网络的高分辨率航空影像中建筑物提取方法,实现端到端的建筑物位置等信息提取。整个模型框架以SegNet模型为基础,在上采样阶段结合SegNet模型中的存储最大池化索引和U-Net模型中的跳跃连接,有效地将低层次和高层次的特征图融合,进行更好的建筑物边界定位。在原有框架的基础上,采用迁移学习思想利用构建的训练样本库对权重进行微调,使网络能够输出稳健的适用于建筑物区域识别的高层次视觉特征。实验采用国际摄影测量与遥感学会公开数据集验证采用方法的有效性和稳健性。实验结果表明,此方法能够有效地提取场景中的建筑物区域。而且,与其他方法相比,该方法在召回率上平均优于2.33%,在精确率上平均优于5.33%,在准确率上优于7.22%。 展开更多
关键词 高分辨率影像 卷积神经网络 城市规划 深度学习 建筑物提取 迁移学习
下载PDF
基于全卷积神经网络的医学图像语义分割研究进展综述 被引量:1
19
作者 于营 赵芝鹤 杨婷婷 《电脑与电信》 2023年第7期16-22,共7页
医学图像语义分割是计算机视觉和医疗领域的重要研究方向。基于全卷积神经网络的医学图像分割已经取得了显著进展,并在健康监测、疾病诊断和治疗方面得到广泛应用。文章总结了该领域的主要数据集和评价指标,回顾了现有的研究方法,尤其... 医学图像语义分割是计算机视觉和医疗领域的重要研究方向。基于全卷积神经网络的医学图像分割已经取得了显著进展,并在健康监测、疾病诊断和治疗方面得到广泛应用。文章总结了该领域的主要数据集和评价指标,回顾了现有的研究方法,尤其对于有突出贡献和技术引领的模型进行了详细介绍,并指出了现存的挑战和一系列有前景的研究方向。 展开更多
关键词 医学图像 语义分割 卷积神经网络 深度学习
下载PDF
基于深度神经网络的火箭图像目标识别与跟踪
20
作者 刘光花 杨发顶 +1 位作者 程亚伟 胡振宇 《沈阳航空航天大学学报》 2024年第4期59-66,共8页
火箭图像目标识别与跟踪是图像目标识别的重要应用领域,是实现火箭测试发射、飞行控制的重要支撑,对火箭目标跟踪、姿态分析控制具有重要意义。上升段的火箭目标视频图像跟踪是火箭飞行测控的重要阶段,但目前对火箭上升段的视频图像跟... 火箭图像目标识别与跟踪是图像目标识别的重要应用领域,是实现火箭测试发射、飞行控制的重要支撑,对火箭目标跟踪、姿态分析控制具有重要意义。上升段的火箭目标视频图像跟踪是火箭飞行测控的重要阶段,但目前对火箭上升段的视频图像跟踪主要依靠人工手动操作云台控制器,图像跟踪存在跟踪滞后、画面抖动等问题,跟踪效果受人为因素影响较大。结合全卷积理论和深度学习方法,提出一种基于全卷积深度神经网络的火箭图像目标识别与跟踪方法,采集火箭发射及上升段的图像作为样本,构建、训练全卷积网络模型,采用端到端的语义分割方法,在深度分类网络的基础上,实现火箭目标在像素级别上的语义判断,具有较好的识别率和鲁棒性。在火箭目标识别的基础上建立云台控制模型,通过对云台的智能控制获得火箭上升段的高质量图像,完成对火箭目标的跟踪。 展开更多
关键词 深度神经网络 图像识别 云台控制器 目标跟踪 卷积网络
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部