The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect t...The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect the unsaturated soil strength; meanwhile, the relationship between the unsaturated soil strength and matric suction is nonlinear. This work is to present closed-form equations of critical embedment depth for a rigid retaining wall against overturning by means of moment equilibrium. Matric suction is considered to be distributed uniformly and linearly with depth. The unified shear strength formulation for unsaturated soils under the plane strain condition is adopted to characterize the intermediate principal stress effect, and strength nonlinearity is described by a hyperbolic model of suction angle. The result obtained is orderly series solutions rather than one specific answer; thus, it has wide theoretical significance and good applicability. The validity of this present work is demonstrated by comparing it with a lower bound solution. The traditional overturning designs for rigid retaining walls, in which the saturated soil mechanics neglecting matric suction or the unsaturated soil mechanics based on the Mohr-Coulomb criterion are employed, are special cases of the proposed result. Parametric studies about the intermediate principal stress, matric suction and its distributions along with two strength nonlinearity methods on a new defined critical buried coefficient are discussed.展开更多
Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining...Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining floor strata. Then the study applied Fourier integral transform to solve a biharmonic equation,obtaining the analytical solution of the stress and displacement of the mining floor. Additionally, this investigation used the Mohr–Coulomb yield criterion to determine the plastic failure depth of the floor strata. The calculation process showed that the plastic failure depth of the floor and floor heave are related to the mining width, burial depth and physical–mechanical properties. The results from an example show that the curve of the plastic failure depth of the mining floor is characterized by a funnel shape and the maximum failure depth generates in the middle of mining floor; and that the maximum and minimum principal stresses change distinctly in the shallow layer and tend to a fixed value with an increase in depth. Based on the displacement results, the maximum floor heave appears in the middle of the stope and its value is 0.107 m. This will provide a basis for floor control. Lastly, we have verified the analytical results using FLAC3 Dto simulate floor excavation and find that there is some deviation between the two results, but their overall tendency is consistent which illustrates that the analysis method can well solve the stress and displacement of the floor.展开更多
In order to study the mechanism of the zonal disintegration phenomenon(ZDP),both experimental and theoretical investigations were carried out.Firstly,based on the similarity law,gypsum was chosen as equivalent materia...In order to study the mechanism of the zonal disintegration phenomenon(ZDP),both experimental and theoretical investigations were carried out.Firstly,based on the similarity law,gypsum was chosen as equivalent material to simulate the deep rock mass,the excavation of deep tunnel was modeled by drilling a hole in the gypsum models,two circular cracked zones were measured in the model,and ZDP in the enclosing rock mass around deep tunnel was simulated in 3D gypsum model tests.Secondly, based on the elasto-plastic analysis of the stressed-strained state of the surrounding rock mass with the improved Hoek-Brown strength criterion and the bilinear constitutive model,the maximum stress zone occurred in vicinity of the elastic-plastic interface due to the excavation of the deep tunnel,rock material in maximum stress zone is in the approximate uniaxial loading state owing to the larger tangential force and smaller radial force,the mechanism of ZDP was explained,which lay in the creep instability failure of rock mass due to the development of plastic zone and transfer of the maximum stress zone within the rock mass.Thirdly,the analytical critical depth for the occurrence of ZDP was obtained,which depended on the mechanical indices and stress concentration coefficient of rock mass.展开更多
基金Project(41202191)supported by the National Natural Science Foundation of ChinaProject(2015JM4146)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(2015)supported by the Postdoctoral Research Project of Shaanxi Province,China
文摘The overturning stability is vital for the retaining wall design of foundation pits, where the surrounding soils are usually unsaturated due to water draining. Moreover, the intermediate principal stress does affect the unsaturated soil strength; meanwhile, the relationship between the unsaturated soil strength and matric suction is nonlinear. This work is to present closed-form equations of critical embedment depth for a rigid retaining wall against overturning by means of moment equilibrium. Matric suction is considered to be distributed uniformly and linearly with depth. The unified shear strength formulation for unsaturated soils under the plane strain condition is adopted to characterize the intermediate principal stress effect, and strength nonlinearity is described by a hyperbolic model of suction angle. The result obtained is orderly series solutions rather than one specific answer; thus, it has wide theoretical significance and good applicability. The validity of this present work is demonstrated by comparing it with a lower bound solution. The traditional overturning designs for rigid retaining walls, in which the saturated soil mechanics neglecting matric suction or the unsaturated soil mechanics based on the Mohr-Coulomb criterion are employed, are special cases of the proposed result. Parametric studies about the intermediate principal stress, matric suction and its distributions along with two strength nonlinearity methods on a new defined critical buried coefficient are discussed.
基金the National Basic Research Program of China(No.2014CB046300)the National Natural Science Foundation of China(No.51174196)
文摘Following exploitation of a coal seam, the final stress field is the sum of in situ stress field and an excavation stress field. Based on this feature, we firstly established a mechanics analytical model of the mining floor strata. Then the study applied Fourier integral transform to solve a biharmonic equation,obtaining the analytical solution of the stress and displacement of the mining floor. Additionally, this investigation used the Mohr–Coulomb yield criterion to determine the plastic failure depth of the floor strata. The calculation process showed that the plastic failure depth of the floor and floor heave are related to the mining width, burial depth and physical–mechanical properties. The results from an example show that the curve of the plastic failure depth of the mining floor is characterized by a funnel shape and the maximum failure depth generates in the middle of mining floor; and that the maximum and minimum principal stresses change distinctly in the shallow layer and tend to a fixed value with an increase in depth. Based on the displacement results, the maximum floor heave appears in the middle of the stope and its value is 0.107 m. This will provide a basis for floor control. Lastly, we have verified the analytical results using FLAC3 Dto simulate floor excavation and find that there is some deviation between the two results, but their overall tendency is consistent which illustrates that the analysis method can well solve the stress and displacement of the floor.
基金Projects(50525825,90815010)supported by the National Natural Science Foundation of ChinaProject(2009CB724608)supported by the Major state Basic Research Development Program of China
文摘In order to study the mechanism of the zonal disintegration phenomenon(ZDP),both experimental and theoretical investigations were carried out.Firstly,based on the similarity law,gypsum was chosen as equivalent material to simulate the deep rock mass,the excavation of deep tunnel was modeled by drilling a hole in the gypsum models,two circular cracked zones were measured in the model,and ZDP in the enclosing rock mass around deep tunnel was simulated in 3D gypsum model tests.Secondly, based on the elasto-plastic analysis of the stressed-strained state of the surrounding rock mass with the improved Hoek-Brown strength criterion and the bilinear constitutive model,the maximum stress zone occurred in vicinity of the elastic-plastic interface due to the excavation of the deep tunnel,rock material in maximum stress zone is in the approximate uniaxial loading state owing to the larger tangential force and smaller radial force,the mechanism of ZDP was explained,which lay in the creep instability failure of rock mass due to the development of plastic zone and transfer of the maximum stress zone within the rock mass.Thirdly,the analytical critical depth for the occurrence of ZDP was obtained,which depended on the mechanical indices and stress concentration coefficient of rock mass.