期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
棉籽油的深度分提工艺 被引量:2
1
作者 左青 李普选 左晖 《中国油脂》 CAS CSCD 北大核心 2021年第10期150-152,共3页
新疆棉籽油含有700 mg/kg的蜡质和26%~28%的固体脂,由于新疆气温多在零度以下,棉籽油在运输、储存和销售过程中易产生固化、沉淀、发朦,影响棉籽油的外观、食用和销售。为了保持包装棉籽油透明,提高棉籽油的质量和附加值,对棉籽油进行... 新疆棉籽油含有700 mg/kg的蜡质和26%~28%的固体脂,由于新疆气温多在零度以下,棉籽油在运输、储存和销售过程中易产生固化、沉淀、发朦,影响棉籽油的外观、食用和销售。为了保持包装棉籽油透明,提高棉籽油的质量和附加值,对棉籽油进行深度分提以脱蜡脱脂。介绍了棉籽油深度分提工艺,即在15℃脱除蜡质,在7℃分提出棕榈酸甘三酯,继续降温至-10℃分提出棕榈酸甘二酯、棕榈酸甘一酯及其他硬脂,最终得到在低温下保持透明的棉籽液油。 展开更多
关键词 棉籽油 脱蜡 脱脂 深度分提
下载PDF
Machine-learning-aided precise prediction of deletions with next-generation sequencing
2
作者 管瑞 髙敬阳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3239-3247,共9页
When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is l... When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is low.To address the problem,an integrated strategy is proposed.It organically combines the fundamental theories of the three mainstream methods(read-pair approaches,split-read technologies and read-depth analysis) with modern machine learning algorithms,using the recipe of feature extraction as a bridge.Compared with the state-of-art split-read methods for deletion detection in both low and high sequence coverage,the machine-learning-aided strategy shows great ability in intelligently balancing sensitivity and false discovery rate and getting a both more sensitive and more precise call set at single-base-pair resolution.Thus,users do not need to rely on former experience to make an unnecessary trade-off beforehand and adjust parameters over and over again any more.It should be noted that modern machine learning models can play an important role in the field of structural variation prediction. 展开更多
关键词 next-generation sequencing deletion prediction sensitivity false discovery rate feature extraction machine learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部