期刊文献+
共找到819篇文章
< 1 2 41 >
每页显示 20 50 100
基于深度卷积神经网络的频高图特征提取研究
1
作者 鲁转侠 华彩成 +6 位作者 冯健 蔚娜 王岳松 冯静 娄鹏 王严 李春晓 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第9期3290-3300,共11页
本文提出了一种利用深度卷积神经网络的频高图特征提取方法,在频高图不同层回波信息标记的基础上,构建包含降采样部分和上采样部分的频高图回波识别网络模型,实现了频高图不同回波信息自动识别.利用试验获取的频高图数据,通过人工对频... 本文提出了一种利用深度卷积神经网络的频高图特征提取方法,在频高图不同层回波信息标记的基础上,构建包含降采样部分和上采样部分的频高图回波识别网络模型,实现了频高图不同回波信息自动识别.利用试验获取的频高图数据,通过人工对频高图中电离层不同层的回波信息分别标记,生成网络模型样本数据集.以随机方式,选取样本数据集80%的数据作为训练数据,其余数据作为测试数据.经网络模型训练和测试,结果显示网络模型能够自动有效地识别测试频高图中不同层的回波信息.在此基础上,结合数字图像处理中的腐蚀算法和连通域思想,针对性地设计滤波器,滤除已识别回波信息中的噪声、干扰、多跳回波,能够实现测试频高图特征参数的有效提取.并且通过与传统方法比较,该方法特征提取精度整体上优于传统方法,可为频高图特征的自动、精确提取提供一种新的技术方法. 展开更多
关键词 频高图 深度卷积神经网 临界频率
下载PDF
基于深度卷积神经网络算法和先验知识构建冠心病患者大鱼际望诊模型的思路与方法
2
作者 刘大胜 李玉坤 +4 位作者 赵志伟 孙晨格 杨伟 王丽颖 韩学杰 《中华中医药学刊》 CAS 北大核心 2024年第5期17-19,共3页
基于全息理论的中医望诊可以辅助诊断西医疾病,但目前中医望诊主要依靠名老中医药专家的经验传承,存在望诊客观化、标准化程度不够,缺乏行业内认可度高的望诊转化技术的问题。而望诊融合人工智能信息化技术,可以提升中医望诊客观化、标... 基于全息理论的中医望诊可以辅助诊断西医疾病,但目前中医望诊主要依靠名老中医药专家的经验传承,存在望诊客观化、标准化程度不够,缺乏行业内认可度高的望诊转化技术的问题。而望诊融合人工智能信息化技术,可以提升中医望诊客观化、标准化的水平,可以有效地降低疾病的恶化率和病死率,促进中医望诊经验的转化。据此,结合前期开展的大鱼际特征与冠心病关系研究,得出大鱼际望诊可以用于冠心病早期预警筛查。以大鱼际望诊和冠心病之间的关系为例,将先验知识和深度卷积神经网络算法深度融合,将特征提取和分类合为一体,利用深度学习端对端的显著特点,输入观察到的原始大鱼际图像像素数据或信息,通过对大鱼际照片的大量深度学习,构建冠心病患者的关键特征要素,融合先验知识后,输出是否为冠心病的分类结果,中间为深层的网络结构。这一思路将提出一种中医望诊客观化、标准化的智能化算法,促进中医望诊经验的转化思路与方法,以提高基层群众的疾病预警筛查能力,服务“健康中国”战略。 展开更多
关键词 图像信息 深度卷积神经网 先验知识 大鱼际望诊 冠心病
下载PDF
基于深度卷积神经网络的电子玻璃缺陷分类方法
3
作者 李苑 于浩 +5 位作者 金良茂 曹志强 陈家睿 郑际杰 韩高荣 刘涌 《中国建材科技》 CAS 2024年第S01期17-23,共7页
电子玻璃是信息显示产业的关键基础材料之一。近年来,显示产业向大尺寸化、超高清和轻薄化发展,对于电子玻璃基板的质量提出了更高的要求。机器视觉检测具有速度快、精度高、成本低、稳定性好等优点,被广泛应用于各种工业场景中。图像... 电子玻璃是信息显示产业的关键基础材料之一。近年来,显示产业向大尺寸化、超高清和轻薄化发展,对于电子玻璃基板的质量提出了更高的要求。机器视觉检测具有速度快、精度高、成本低、稳定性好等优点,被广泛应用于各种工业场景中。图像处理算法、识别分类算法是机器视觉检测的关键技术。本文针对基于深度卷积神经网络的整图分类方法在电子玻璃表面缺陷检测领域的应用,从图像数据处理、卷积神经网络构建、训练调参、评价标准等方面介绍其研究进展,并总结部分应用实例,对电子玻璃缺陷分类未来的研究方向进行展望。 展开更多
关键词 电子玻璃 机器视觉 深度卷积神经网 缺陷分类
下载PDF
面向实际化工过程故障诊断的强化深度卷积神经网络模型构建与应用 被引量:1
4
作者 张佳鑫 张淼 +1 位作者 戴一阳 董立春 《化工进展》 EI CAS CSCD 北大核心 2024年第9期4833-4844,共12页
基于数据驱动的故障诊断技术可以帮助操作人员及时有效发现和检测异常情况,是当前工业与大数据融合的热点领域之一。深度卷积神经网络(deep convolutional neural networks,DCNN)是最常用的基于数据驱动的故障诊断模型,但其激活过程存... 基于数据驱动的故障诊断技术可以帮助操作人员及时有效发现和检测异常情况,是当前工业与大数据融合的热点领域之一。深度卷积神经网络(deep convolutional neural networks,DCNN)是最常用的基于数据驱动的故障诊断模型,但其激活过程存在正负值计算不匹配以及信息流通效率低导致的参数冗余问题。本文提出一种基于最大平滑单元(maximum smoothing unit,MSF)函数的新激活机制克服传统激活函数的缺点,并且引入注意力机制(attention mechanism)结合门控循环单元(gated recurrent unit,GRU)提升DCNN的信息流通效率克服参数冗余问题,以综合提升传统DCNN模型的故障诊断性能。强化深度卷积神经网络(enhanced deep convolutional neural networks,EDCNN)的现有模型表现出显著提高的故障诊断性能,这在工业致动器控制系统和工业酸性气体吸收过程中的应用得到了验证。两个过程的平均故障诊断率均超过99.0%。 展开更多
关键词 故障诊断 强化深度卷积神经网 过程控制 系统工程 激活函数
下载PDF
轻量化深度卷积神经网络设计研究进展
5
作者 周志飞 李华 +3 位作者 冯毅雄 陆见光 钱松荣 李少波 《计算机工程与应用》 CSCD 北大核心 2024年第22期1-17,共17页
轻量化设计是解决深度卷积神经网络(deep convolutional neural network,DCNN)对设备性能和硬件资源依赖性的流行范式,轻量化的目的是在不牺牲网络性能的前提下,提高计算速度和减少内存占用。综述了DCNN的轻量化设计方法,着重回顾了近年... 轻量化设计是解决深度卷积神经网络(deep convolutional neural network,DCNN)对设备性能和硬件资源依赖性的流行范式,轻量化的目的是在不牺牲网络性能的前提下,提高计算速度和减少内存占用。综述了DCNN的轻量化设计方法,着重回顾了近年来DCNN的研究进展,包括体系设计和模型压缩两大轻量化策略,深入比较了这两类方法的创新性、优势与局限性,并探讨了支撑轻量化模型的底层框架。此外,对轻量化网络已经成功应用的场景进行了描述,并对DCNN轻量化的未来发展趋势进行了预测,旨在为深度卷积神经网络的轻量化研究提供有益的见解和参考。 展开更多
关键词 深度卷积神经网 轻量化 体系设计 模型压缩
下载PDF
基于迁移学习和深度卷积神经网络的胸腰椎骨折AI分类研究
6
作者 郝引 陈馨 +2 位作者 莫云海 吴禄源 仝敬博 《智能科学与技术学报》 CSCD 2024年第3期319-328,共10页
传统的胸腰椎骨折影像辅助分类方法准确率低、泛化能力差,为此提出一种基于深度卷积神经网络方法辅助诊断的胸腰椎骨折AI分类方法。收集四川省中西医结合医院胸腰椎骨折患者CT影像图片共698张,建立数据集,其中单纯压缩性骨折(A类)279张... 传统的胸腰椎骨折影像辅助分类方法准确率低、泛化能力差,为此提出一种基于深度卷积神经网络方法辅助诊断的胸腰椎骨折AI分类方法。收集四川省中西医结合医院胸腰椎骨折患者CT影像图片共698张,建立数据集,其中单纯压缩性骨折(A类)279张,爆裂性骨折(B类)295张,正常(C类)124张。对传统卷积神经网络模型ResNet-50进行改进并融入迁移学习,对数据集进行训练,获得胸腰椎骨折AI分类模型。采用混淆矩阵评估预测模型分类性能,模型的训练集和验证集准确率分别为95.75%和96.36%,表明训练得到的智能分类模型具有较好的准确率和泛化能力。本文提出胸腰椎骨折影像辅助分类方法,可以提高人工诊断的效率和准确率。 展开更多
关键词 胸腰椎骨折 深度卷积神经网 AI分类方法 泛化能力
下载PDF
基于深度卷积神经网络的智能机器人语音自动识别方法 被引量:3
7
作者 相增辉 张国梁 +2 位作者 庞渊源 陈鑫 王鑫 《自动化技术与应用》 2024年第4期43-46,共4页
外界环境的干扰会降低智能机器人语音识别效果,为提升智能机器人的识别效果,提出基于深度卷积神经网络的智能机器人语音自动识别方法。该方法首先分析了智能机器人智能化服务特性,以此为基础采集智能机器人语音信息数据;利用构建的伽玛... 外界环境的干扰会降低智能机器人语音识别效果,为提升智能机器人的识别效果,提出基于深度卷积神经网络的智能机器人语音自动识别方法。该方法首先分析了智能机器人智能化服务特性,以此为基础采集智能机器人语音信息数据;利用构建的伽玛通滤波器降低智能机器人语音噪声数据,进一步提取语音信息能量特征;将信息能量特征输入到深度卷积神经网络识别模型内分类训练,实现智能机器人语音自动识别。实验结果表明,该方法的语音识别率达到了90%以上,识别耗时低于1.5 s,提升了智能机器人的语音识别效果。 展开更多
关键词 深度卷积神经网 智能机器人语音识别 数据滤波 分类训练
下载PDF
基于深度卷积神经网络的齿轮箱健康状态识别
8
作者 董洋 王琳 +1 位作者 张驰 赵群 《计算机仿真》 2024年第5期455-459,共5页
齿轮箱为许多机械设备的重要传动部件,其健康运行状态识别对于设备稳定运行、安全运转等具有非常重要的意义。为准确地评价齿轮箱的健康状态,提出一种基于深度卷积神经网络的齿轮箱健康状态识别方法。本文首先采用变分模态分解(Variatio... 齿轮箱为许多机械设备的重要传动部件,其健康运行状态识别对于设备稳定运行、安全运转等具有非常重要的意义。为准确地评价齿轮箱的健康状态,提出一种基于深度卷积神经网络的齿轮箱健康状态识别方法。本文首先采用变分模态分解(Variational Mode Decomposition,VMD)与小波阈值(Wavelet Threshold,WT)结合的方式对采集的齿轮箱振动信号进行降噪。其次,对降噪后的信号进行线性及非线性特征提取。最后,采用深度卷积神经网络(Deep Convolutional Neural Network,DCNN)建立齿轮箱的健康状态识别模型。实验结果表明,所提方法对齿轮箱健康状态的正确识别率达到97.5%以上。 展开更多
关键词 齿轮箱 变分模态分解 深度卷积神经网 健康识别
下载PDF
基于深度卷积神经网络的物联网异构信息安全传输算法
9
作者 王庆宇 余战秋 《齐齐哈尔大学学报(自然科学版)》 2024年第2期60-65,共6页
为了提高物联网信息传输的安全性,提出基于深度卷积神经网络的物联网异构信息安全传输算法。在建立卷积神经网络基础架构的基础上构建深度卷积神经网络模型,利用均值池化方法计算异构数据特征点的平均值,分类异构数据特征,完成物联网异... 为了提高物联网信息传输的安全性,提出基于深度卷积神经网络的物联网异构信息安全传输算法。在建立卷积神经网络基础架构的基础上构建深度卷积神经网络模型,利用均值池化方法计算异构数据特征点的平均值,分类异构数据特征,完成物联网异构数据特征识别。对特征识别后的物联网异构数据进行非对称加密,结合数字签名技术完成物联网异构数据安全传输。仿真测试结果表明,方法的时间复杂度、响应时间、丢包率均较低,且带宽利用率较高。 展开更多
关键词 深度卷积神经网 物联网 异构信息 安全传输
下载PDF
基于深度卷积神经网络的垃圾分类算法研究 被引量:1
10
作者 王燕 《造纸装备及材料》 2024年第1期104-106,共3页
垃圾分类是一项重要的环保工作,对于实现可持续发展目标具有重要意义。传统的垃圾分类方法需要大量的人力和物力投入,效率低下,而深度卷积神经网络是一种基于大数据的机器学习方法,具有自动化、高效率、准确性高等优点,可以有效地解决... 垃圾分类是一项重要的环保工作,对于实现可持续发展目标具有重要意义。传统的垃圾分类方法需要大量的人力和物力投入,效率低下,而深度卷积神经网络是一种基于大数据的机器学习方法,具有自动化、高效率、准确性高等优点,可以有效地解决垃圾分类问题。基于此,文章介绍了深度卷积神经网络的定义、基本原理和应用场景,分析了深度卷积神经网络在垃圾分类中的应用,并提出了一种基于深度卷积神经网络的垃圾分类模型。该模型通过对垃圾图像进行特征提取和分类,实现了对垃圾的自动识别和分类。实验结果表明,该模型具有较高的准确率和鲁棒性,可以有效地应用于垃圾分类领域。 展开更多
关键词 深度卷积神经网 垃圾分类算法 数据集
下载PDF
ECPANet:一种基于注意力的深度卷积神经网络通道剪枝方法
11
作者 余显冰 杨礼友 李健 《现代计算机》 2024年第7期9-16,共8页
在深度学习领域中,卷积神经网络的快速发展导致了先进模型需要大量的计算和存储资源。然而,将这些模型部署到计算和存储资源受限且高实时性的嵌入式设备上变得越来越具有挑战性。为解决这个问题,通道剪枝已成为网络压缩的主要方法之一... 在深度学习领域中,卷积神经网络的快速发展导致了先进模型需要大量的计算和存储资源。然而,将这些模型部署到计算和存储资源受限且高实时性的嵌入式设备上变得越来越具有挑战性。为解决这个问题,通道剪枝已成为网络压缩的主要方法之一。传统的通道剪枝方法存在着精度下降和难以确定通道重要性的问题。针对这些问题,提出了一种高效的通道注意力剪枝方法。通过将ECPANet模块嵌入到深度卷积神经网络中以增强其表征能力,评估每个通道在特征映射中的重要性,并根据通道重要性因子剪枝掉不重要的通道以减小模型的大小和计算量。实验结果表明,与传统的通道剪枝方法相比,基于注意力的通道剪枝方法能够更准确地确定通道重要性,从而提高剪枝效果和模型性能。 展开更多
关键词 深度卷积神经网 通道剪枝 注意力机制
下载PDF
基于深度卷积神经网络的单向阀泄漏模式识别
12
作者 郭建政 童成彪 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期100-104,126,共6页
以SV10PB1-30B液控单向阀为研究对象,利用传感器采集3种不同泄漏模式下10个阀芯的振动信号,设计深度卷积模型,开展不同测点(单向阀的上表面和阀座)、不同信号特征提取方式(原始信号、特征值、特征图)下的模式识别研究。结果表明:基于轴... 以SV10PB1-30B液控单向阀为研究对象,利用传感器采集3种不同泄漏模式下10个阀芯的振动信号,设计深度卷积模型,开展不同测点(单向阀的上表面和阀座)、不同信号特征提取方式(原始信号、特征值、特征图)下的模式识别研究。结果表明:基于轴向冲击信号特征值和深度卷积神经网络的模型能有效识别故障类型,验证集上的识别准确率高达88.293%,是基于特征图的7.79倍,是基于原始时域冲击信号的1.16倍;训练步数以100的较优,同时该模型对正常阀芯和不同损伤阀芯的分类效果明显。 展开更多
关键词 单向阀 深度卷积神经网 故障诊断 模式识别
下载PDF
基于低成本FPGA的深度卷积神经网络加速器设计
13
作者 杨统 肖昊 《电子测量技术》 北大核心 2024年第10期184-190,共7页
现有的深度卷积神经网络在推理过程中产生大量的层间特征数据。为了在嵌入式系统中保持实时处理,需要大量的片上存储来缓存层间特征映射。本文提出了一种层间特征压缩技术,以显著降低片外存储器访问带宽。此外,本文针对FPGA中BRAM的特... 现有的深度卷积神经网络在推理过程中产生大量的层间特征数据。为了在嵌入式系统中保持实时处理,需要大量的片上存储来缓存层间特征映射。本文提出了一种层间特征压缩技术,以显著降低片外存储器访问带宽。此外,本文针对FPGA中BRAM的特点提出了一种通用性的卷积计算方案,并从电路层面做出了优化,既减少了访存次数又提高了DSP的计算效率,从而大幅提高了计算速度。与CPU运行MobileNetV2相比,文章提出的深度卷积神经网络加速器在性能上提升了6.3倍;与同类型的DCNN加速器相比,文章提出的DCNN加速器在DSP性能效率上分别提升了17%和156%。 展开更多
关键词 深度卷积神经网 现场可编程门阵列 深度学习
下载PDF
基于深度卷积神经网络的多媒体视觉图像重构处理研究
14
作者 孙英 刘忠利 《信息记录材料》 2024年第8期138-140,共3页
图像重构方法往往依赖于手动设计的特征和先验知识,导致图像峰值信噪比低,为此进行基于深度卷积神经网络的多媒体视觉图像重构处理研究。首先,对视觉图像去噪处理后,采用多方向局部二值模式提取多媒体视觉图像的特征。其次,采用线性融... 图像重构方法往往依赖于手动设计的特征和先验知识,导致图像峰值信噪比低,为此进行基于深度卷积神经网络的多媒体视觉图像重构处理研究。首先,对视觉图像去噪处理后,采用多方向局部二值模式提取多媒体视觉图像的特征。其次,采用线性融合算法来融合不同来源的图像信息,利用深度卷积神经网络进行图像分类。最后,采用匹配跟踪技术实现图像重构,恢复出高质量的图像。研究结果表明:随着采样率的增加,与现有图像重构方法相比,所研究方法峰值信噪比上升趋势明显,数值增加,重构质量更高。 展开更多
关键词 深度卷积神经网 多媒体视觉图像 图像重构 重构处理
下载PDF
基于深度卷积神经网络的城市噪声识别研究
15
作者 郑盼盼 闫东 《电声技术》 2024年第9期41-43,共3页
为提高噪声的分类准确率,研究基于深度卷积神经网络(Deep Convolutional Neural Network,DCNN)的城市噪声识别方法。首先,分析基于深度神经网络的噪声识别框架;其次,通过短时傅里叶变换(Short Time Fourier Transform,STFT)提取噪声信... 为提高噪声的分类准确率,研究基于深度卷积神经网络(Deep Convolutional Neural Network,DCNN)的城市噪声识别方法。首先,分析基于深度神经网络的噪声识别框架;其次,通过短时傅里叶变换(Short Time Fourier Transform,STFT)提取噪声信号的时频域特征,采用DCNN识别噪声类型;最后,采用UrbanSound8K数据集进行实验分析。实验结果表明,该方法在不同噪声类别上均具有较高的分类准确率。 展开更多
关键词 深度卷积神经网络(DCNN) 城市噪声 声音分类 时频域特征
下载PDF
基于离散剪切波与优化深度卷积神经网络的图像降噪方法
16
作者 白华军 李荣昌 +2 位作者 司洁戈 张义 张景熙 《电声技术》 2024年第1期146-152,共7页
海洋试验图像通常受到海洋气象条件、海水光照折射和海洋深度等因素的影响,导致在海洋中采集的图像包含严重的噪声。为了提高海洋试验图像的清晰度和降噪性,提出一种基于离散剪切波与优化深度卷积神经网络相结合的海洋试验图像降噪方法... 海洋试验图像通常受到海洋气象条件、海水光照折射和海洋深度等因素的影响,导致在海洋中采集的图像包含严重的噪声。为了提高海洋试验图像的清晰度和降噪性,提出一种基于离散剪切波与优化深度卷积神经网络相结合的海洋试验图像降噪方法。采用离散剪切波变换分解海洋试验图像,能有效从图像中提取不同方向和频率的特征。利用优化深度卷积神经网络强大的图像特征提取能力,经网络模型训练后,能获取图像中的关键特征,达到降噪的目的。在验证实验中,所提方法与传统图像降噪方法相比,能有效保留图像的纹理和细节特性,获得了较好的降噪效果,有助于提高海洋试验图像的清晰度和降噪性。 展开更多
关键词 离散剪切波变换 降噪方法 深度卷积神经网 海洋试验
下载PDF
基于深度卷积神经网络的端到端语音识别方法研究
17
作者 李瑾辉 张国梁 +2 位作者 苏杨 朱晓鸿 王鑫 《自动化技术与应用》 2024年第6期55-59,共5页
端到端语音处于直接通信环境,缺少加密过程,语音信息传输过程中存在一定的干扰,导致信号特征提取较为困难,为此提出基于深度卷积神经网络的语音识别方法的研究。首先基于尺度噪声能量估计方法完成语音去噪处理;其次,通过聚合经验模态分... 端到端语音处于直接通信环境,缺少加密过程,语音信息传输过程中存在一定的干扰,导致信号特征提取较为困难,为此提出基于深度卷积神经网络的语音识别方法的研究。首先基于尺度噪声能量估计方法完成语音去噪处理;其次,通过聚合经验模态分解方法提取语音特征信息;最后,使用残差网络优化深度卷积神经网络模型,并完成端到端的语音识别。实验结果表明,所提方法在无噪声添加和有噪声添加的情况下,端到端语音识别词错率最大值分别为10%、12%,表明该方法能够高效、准确实现端到端语音识别,具有较高的实际应用价值。 展开更多
关键词 语音识别 语音去噪 端到端 深度卷积神经网 聚合经验模态分解
下载PDF
基于深度卷积神经网络的肝脏肿瘤检测算法研究
18
作者 黄晓青 马佳丽 《宁夏师范学院学报》 2024年第7期84-91,共8页
利用深度卷积神经网络对肝脏肿瘤进行检测,首先对肝脏肿瘤CT图像进行预处理,然后根据特征像素值对图像进行阈值分割,并对肿瘤区域进行标记,再使用标记好的数据集建立深度卷积神经网络模型进行训练,接着利用训练好的模型对未标记的验证... 利用深度卷积神经网络对肝脏肿瘤进行检测,首先对肝脏肿瘤CT图像进行预处理,然后根据特征像素值对图像进行阈值分割,并对肿瘤区域进行标记,再使用标记好的数据集建立深度卷积神经网络模型进行训练,接着利用训练好的模型对未标记的验证数据集进行预测和验证,最后在测试数据集上测试模型的性能,根据测试结果,对肝脏肿瘤进行检测.通过对深度卷积神经网络算法、分水岭算法和连通域算法的检测结果进行比较,实验结果表明深度卷积神经网络算法在肿瘤检测方面具有最高的准确率和最大的F_(1)分数.说明深度卷积神经网络在肝脏肿瘤检测中具有卓越的性能,能够准确地识别肿瘤并减少误诊和漏诊的可能性. 展开更多
关键词 深度卷积神经网 肿瘤检测 F_(1)分数
下载PDF
基于深度卷积神经网络的三维医学图像分割方法
19
作者 朱益辉 《数字通信世界》 2024年第8期98-100,共3页
常规的三维医学图像分割处理的把控效果较差,为此该文提出基于深度卷积神经网络的三维医学图像分割方法。设置初始分割节点,采用多模态的方式,构建多模态图像分割序列。设计深度卷积神经网络医学图像分割模型,采用空间金字塔池化辅助处... 常规的三维医学图像分割处理的把控效果较差,为此该文提出基于深度卷积神经网络的三维医学图像分割方法。设置初始分割节点,采用多模态的方式,构建多模态图像分割序列。设计深度卷积神经网络医学图像分割模型,采用空间金字塔池化辅助处理方法来强化图像分割结果。测试结果表明,用此方法分割后的Dice系数均可以达到0.7以上,处理效果更好。 展开更多
关键词 深度卷积神经网 三维医学 图像分割 分割方法 图像预处理
下载PDF
基于深度卷积神经网络的降雨径流预测方法
20
作者 张楠 《水利科学与寒区工程》 2024年第1期90-94,共5页
为了更加准确的预测径流,本文提出了一种基于深度卷积神经网络的预测方法。运用模型进行训练和测试,与传统的降雨径流预测模型进行对比分析。研究结果表明:所构建的深度学习机更好地模拟了数据内部复杂的非线性。即使观测值有限,也能保... 为了更加准确的预测径流,本文提出了一种基于深度卷积神经网络的预测方法。运用模型进行训练和测试,与传统的降雨径流预测模型进行对比分析。研究结果表明:所构建的深度学习机更好地模拟了数据内部复杂的非线性。即使观测值有限,也能保持很好的预测能力。新模型实现了多个预测(1h、3d或5d),以展示更好的模型性能。深度卷积神经网络预测方法可以推广到类似的气候区,针对不同的水文条件,需要对其进行修正,以预测新区的径流量。 展开更多
关键词 深度卷积神经网 降雨径流 预测
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部