期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度双线性转换注意力机制网络的林业有害生物识别方法 被引量:1
1
作者 苏佳杰 张哲宇 +3 位作者 徐嘉俊 李彬 吕军 姚青 《林业科学》 EI CAS CSCD 北大核心 2023年第2期121-128,共8页
【目的】针对林业有害生物种类多,不少物种之间相似度高,视觉差异小,不易区分,导致林业防控人员无法快速准确识别有害生物种类的问题,本文提出基于深度双线性转换注意力机制网络(DBTANet)的林业有害生物细粒度图像识别方法。【方法】以... 【目的】针对林业有害生物种类多,不少物种之间相似度高,视觉差异小,不易区分,导致林业防控人员无法快速准确识别有害生物种类的问题,本文提出基于深度双线性转换注意力机制网络(DBTANet)的林业有害生物细粒度图像识别方法。【方法】以自然状态下拍摄的60种林业害虫和14种林业有害植物图像作为研究对象,利用水平镜像、亮度调节、高斯模糊和高斯噪声等方法对图像数据集进行增强,按6∶2∶2比例划分为训练集、验证集和测试集;采用双线性插值法将每幅图像缩放至统一尺寸;改进ResNet网络中残差模块,加入深度双线性转换模块和注意力机制模块,建立DBTANet-101网络进行特征提取与分类;利用平均准确率、平均召回率和平均F1值3个指标评价不同模型对林业有害生物的识别结果。【结果】VGGNet-19、ResNet-50、ResNet-101、改进残差模块的ResNet-50和ResNet-101共5个模型对74种林业有害生物平均准确率分别为78.6%、74.9%、76.3%、79.7%和81.1%;在改进残差模块的ResNet-101基础上,增加深度双线性转换模块和注意力机制模块后,74种林业有害生物的平均准确率和召回率分别提高了10.2%和12.1%,22种相似的有害生物细粒度图像平均准确率提高了15.7%。【结论】基于深度双线性转换注意力机制网络(DBTANet)的林业有害生物细粒度图像识别方法,对74种林业有害生物和22种相似有害生物细粒度图像的平均准确率分别为91.3%和85.1%;双线性转换模块和注意力机制可以有效提高林业有害生物识别模型的准确率。 展开更多
关键词 林业有害生物 细粒度图像识别 深度双线性转换 注意力机制 ResNet
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部