期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合深度可分离小卷积核和CBAM的改进CNN故障诊断模型
被引量:
3
1
作者
于洋
马军
+2 位作者
王晓东
朱江艳
刘桂敏
《电子测量技术》
北大核心
2022年第6期171-178,共8页
为了解决最大池化丢失信息和平均池化模糊特征的问题,同时提高模型时频图像识别效率,降低模型复杂度,提出一种采用深度可分离小卷积核进行降采样和CBAM的CNN网络模型对轴承进行故障诊断。首先,在除最后一层的池化层中,使用深度可分离小...
为了解决最大池化丢失信息和平均池化模糊特征的问题,同时提高模型时频图像识别效率,降低模型复杂度,提出一种采用深度可分离小卷积核进行降采样和CBAM的CNN网络模型对轴承进行故障诊断。首先,在除最后一层的池化层中,使用深度可分离小卷积层代替池化层,实现池化层的降采样功能。其次,在最后一层池化层引入CBAM,对时频图像所表征的故障特征给予更多的关注,以提高模型计算效率。再次,使用全局平均池化代替传统全连接层,进一步减少模型参数数量。最后,利用CWRU轴承振动数据和自制实验平台数据验证所提方法在滚动轴承故障诊断方面的有效性和可行性。实验结果表明,融合深度可分离小卷积核和CBAM改进的CNN模型有效减少了模型需要的训练参数和计算量,且在识别准确率方面取得了更优的性能。
展开更多
关键词
深度可分离小卷积
CBAM
卷积
神经网络
滚动轴承
下载PDF
职称材料
题名
融合深度可分离小卷积核和CBAM的改进CNN故障诊断模型
被引量:
3
1
作者
于洋
马军
王晓东
朱江艳
刘桂敏
机构
昆明理工大学信息工程与自动化学院
昆明理工大学云南省人工智能重点实验室
出处
《电子测量技术》
北大核心
2022年第6期171-178,共8页
基金
国家自然科学基金(51765002,61663017)
云南省科技计划项目(2019FD042)资助。
文摘
为了解决最大池化丢失信息和平均池化模糊特征的问题,同时提高模型时频图像识别效率,降低模型复杂度,提出一种采用深度可分离小卷积核进行降采样和CBAM的CNN网络模型对轴承进行故障诊断。首先,在除最后一层的池化层中,使用深度可分离小卷积层代替池化层,实现池化层的降采样功能。其次,在最后一层池化层引入CBAM,对时频图像所表征的故障特征给予更多的关注,以提高模型计算效率。再次,使用全局平均池化代替传统全连接层,进一步减少模型参数数量。最后,利用CWRU轴承振动数据和自制实验平台数据验证所提方法在滚动轴承故障诊断方面的有效性和可行性。实验结果表明,融合深度可分离小卷积核和CBAM改进的CNN模型有效减少了模型需要的训练参数和计算量,且在识别准确率方面取得了更优的性能。
关键词
深度可分离小卷积
CBAM
卷积
神经网络
滚动轴承
Keywords
deeply separable small convolution
CBAM
convolutional neural network
rolling bearing
分类号
TH213.3 [机械工程—机械制造及自动化]
TN911 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合深度可分离小卷积核和CBAM的改进CNN故障诊断模型
于洋
马军
王晓东
朱江艳
刘桂敏
《电子测量技术》
北大核心
2022
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部