期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于自编码器的过完备多级表示深度子空间聚类
1
作者 汪雷杰 徐慧英 +1 位作者 朱信忠 汪紫莹 《浙江师范大学学报(自然科学版)》 CAS 2024年第2期166-175,共10页
深度子空间聚类网络利用深度自表达性,借助具备全连接层的欠完备深度自编码器,有效地解决了无监督子空间聚类难题.然而,该方法使用输入数据的不完全表示,并且缺乏低级和高级信息的集成,从而损害其鲁棒性.为解决这一问题,提出了一种新的... 深度子空间聚类网络利用深度自表达性,借助具备全连接层的欠完备深度自编码器,有效地解决了无监督子空间聚类难题.然而,该方法使用输入数据的不完全表示,并且缺乏低级和高级信息的集成,从而损害其鲁棒性.为解决这一问题,提出了一种新的深度子空间聚类方法,该方法使用卷积自动编码器将输入图像转换为位于线性子空间联合上的新表示.在编码器层加入了过完备分支,使得网络能够捕捉到更精细的数据细节.此外,在编码器和相应的解码器层之间引入多个完全连接的线性层.这些互相连接的层协同作用,将低级和高级信息结合在一起,从而在编码器的不同层级上生成了多组自表达和信息表示.该过程有效地促进了特征学习过程.最后,引入了一个新的损失最小化问题,利用初始样本聚类有效地集成了多级表示,从而更准确地恢复了底层子空间结构.随后,采用迭代方案来最小化损失函数.在4个真实数据集上的实验结果表明,在大多数子空间聚类场景中,本文方法最优. 展开更多
关键词 无监督学习 深度子空间聚类 自动编码器 过完备表示 多层次表示
下载PDF
统一框架的增强深度子空间聚类方法
2
作者 王清 赵杰煜 +1 位作者 叶绪伦 王弄潇 《计算机应用》 CSCD 北大核心 2024年第7期1995-2003,共9页
深度子空间聚类是一种处理高维数据聚类任务的有效方法。然而,现有的深度子空间聚类方法通常将自表示学习和指标学习作为两个独立的过程,导致在处理具有挑战性的数据时,固定的自表示矩阵会导致次优的聚类结果;另外,自表示矩阵的质量对... 深度子空间聚类是一种处理高维数据聚类任务的有效方法。然而,现有的深度子空间聚类方法通常将自表示学习和指标学习作为两个独立的过程,导致在处理具有挑战性的数据时,固定的自表示矩阵会导致次优的聚类结果;另外,自表示矩阵的质量对聚类结果的准确性至关重要。针对上述问题,提出一种统一框架的增强深度子空间聚类方法。首先,通过将特征学习、自表示学习和指标学习集成在一起同时优化所有参数,根据数据的特征动态地学习自表示矩阵,确保准确地捕捉数据特征;其次,为了提高自表示学习的效果,提出类原型伪标签学习,为特征学习和指标学习提供自监督信息,进而促进自表示学习;最后,为了增强嵌入表示的判别能力,引入正交性约束帮助实现自表示属性。实验结果表明,与AASSC(Adaptive Attribute and Structure Subspace Clustering network)相比,所提方法在MNIST、UMIST、COIL20数据集上的聚类准确率分别提升了1.84、0.49、0.34个百分点。可见,所提方法提高了自表示矩阵学习的准确性,聚类效果更好。 展开更多
关键词 深度子空间聚类 自表示学习 指标学习 亲和矩阵 正交约束
下载PDF
基于一致性和多样性的多尺度自表示学习的深度子空间聚类
3
作者 张卓 陈花竹 《计算机应用》 CSCD 北大核心 2024年第2期353-359,共7页
深度子空间聚类(DSC)基于原始数据位于低维非线性子空间的集合中的假设。其中深度子空间聚类多尺度表示学习方法在深度自编码器的基础上,将每一层的编码器与对应的解码器之间都添加全连接层,并以此捕获多尺度的特征,但它没有深度分析多... 深度子空间聚类(DSC)基于原始数据位于低维非线性子空间的集合中的假设。其中深度子空间聚类多尺度表示学习方法在深度自编码器的基础上,将每一层的编码器与对应的解码器之间都添加全连接层,并以此捕获多尺度的特征,但它没有深度分析多尺度特征的性质,也没有考虑输入数据和输出数据之间多尺度的重构损失。为了解决上述问题,首先建立每个网络层的重构损失函数,监督不同级别编码器参数的学习;然后利用多尺度特征共有的自表示矩阵和特有的自表示矩阵的和具有块对角性,提出更有效的多尺度自表示模块;最后分析不同尺度特征特有的自表示矩阵之间的多样性,有效地利用了多尺度的特征矩阵。在此基础上,提出一种基于一致性和多样性的多尺度自表示学习的深度子空间聚类(MSCD-DSC)方法。在数据集Extended Yale B、ORL、COIL20和Umist上的实验结果表明,相较于次优的MLRDSC(Multi-Level Representation learning for Deep Subspace Clustering),MSCD-DSC的聚类错误率分别降低了15.44%、2.22%、3.37%和13.17%,表明MSCD-DSC的聚类效果优于已有的方法。 展开更多
关键词 深度子空间聚类 自编码器 多尺度 自表示矩阵 一致性 多样性
下载PDF
基于多特征深度子空间聚类的高光谱影像波段选择 被引量:1
4
作者 何珂 孙伟伟 +2 位作者 黄可 陈镔捷 杨刚 《遥感学报》 EI CSCD 北大核心 2024年第1期132-141,共10页
高光谱影像受到高维波段间强相关性的困扰,导致处理应用的困难。而现有高光谱波段选择方法通常以线性角度考虑波段间关系,未充分考虑多尺度的信息且容易受到噪声的影响,导致所选的波段子集性能不佳。为了克服上述问题,本文提出了基于多... 高光谱影像受到高维波段间强相关性的困扰,导致处理应用的困难。而现有高光谱波段选择方法通常以线性角度考虑波段间关系,未充分考虑多尺度的信息且容易受到噪声的影响,导致所选的波段子集性能不佳。为了克服上述问题,本文提出了基于多特征的深度子空间聚类方法进行高光谱影像波段选择。该方法将自表达层嵌入到卷积自编码器中学习子空间自表达系数,充分考虑了空间信息和光谱信息的交互,用非线性的视角思考了波段间关系。为了提高潜在表征的学习能力,提升自表达系数学习的准确性,本文将注意力模块和多特征提取模块与卷积自编码器相结合,进一步降低了异常值的干扰。本文在3个高光谱遥感影像数据集上,将提出的方法与几种经典主流的方法进行多种对比实验,证明了本文方法能够选择具有代表性的波段子集。 展开更多
关键词 高光谱遥感 降维 波段选择 多特征 深度子空间聚类
原文传递
基于自适应权重融合的深度多视子空间聚类
5
作者 刘静 孙艳丰 胡永利 《北京工业大学学报》 CAS CSCD 北大核心 2023年第7期758-768,共11页
针对深度多视子空间聚类网络在进行数据融合时不能区分各视图可靠性,以及缺乏对多视数据间一致性信息与互补性信息的利用等问题,提出一种基于自适应的权重融合深度多视子空间聚类(deep multi-view subspace clustering based on adaptiv... 针对深度多视子空间聚类网络在进行数据融合时不能区分各视图可靠性,以及缺乏对多视数据间一致性信息与互补性信息的利用等问题,提出一种基于自适应的权重融合深度多视子空间聚类(deep multi-view subspace clustering based on adaptive weight fusion,DMSC-AWF)方法。首先,通过使各视图共享同一个自表示层学习一个公共的表示矩阵,同时为各视图分别构建自表示层来学习各视图特定的表示矩阵,以此确保多视数据的一致性信息和互补性信息得以有效利用。然后,在共享自表示层基础上引入注意力模块来量化不同视图的重要性,注意力模块自适应地为每个视图数据分配权重。最后,在4个公开数据集上进行聚类实验,该方法的聚类结果相比于对比方法有明显的提升,并且,通过退化实验验证了注意力模块学习视权重的有效性和重要性。 展开更多
关键词 深度子空间聚类 表示矩阵 多视 权重自适应 注意力模块 权重分配
下载PDF
使用深度对抗子空间聚类实现高光谱波段选择 被引量:4
6
作者 曾梦 宁彬 +1 位作者 蔡之华 谷琼 《计算机应用》 CSCD 北大核心 2020年第2期381-385,共5页
高光谱图像(HSI)由数百个波段组成,波段之间的相关性强且具有较高的冗余度,导致出现维度灾难并且分类的复杂性很高。为此,使用深度对抗子空间聚类(DASC)网络进行高光谱的波段选择,并引入拉普拉斯正则化使网络更优,在保证分类精度的前提... 高光谱图像(HSI)由数百个波段组成,波段之间的相关性强且具有较高的冗余度,导致出现维度灾难并且分类的复杂性很高。为此,使用深度对抗子空间聚类(DASC)网络进行高光谱的波段选择,并引入拉普拉斯正则化使网络更优,在保证分类精度的前提下降低分类的复杂度。该网络通过在编码器和解码器中引入自表达层来模仿传统子空间聚类的"自表达"属性,充分运用光谱信息和非线性特征转换得到波段之间的相互关系,解决传统波段选择方法无法同时考虑光谱和空间信息的问题。同时,引入对抗学习来监督自编码器的样本表示和子空间聚类,使得子空间聚类具有更好的自表达性能。为了使网络性能更优,加入拉普拉斯正则化来考虑反映图像几何信息的局部流形结构。实验在两个公开的高光谱数据集上进行,所提出的方法和几种主流的波段选择方法进行对比的结果表明,DASC方法在分类精度上优于对比方法,其选出的波段子集可以满足应用需求。 展开更多
关键词 高光谱图像 波段选择 深度对抗空间 拉普拉斯正则化 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部