期刊文献+
共找到60,245篇文章
< 1 2 250 >
每页显示 20 50 100
深度学习对中医院校大学生数字素养的影响机制研究——基于批判性思维的中介作用
1
作者 黎佳 柏晶 黄景文 《中国医学教育技术》 2024年第5期614-621,共8页
教育数字化转型是数字中国建设的基础支撑,其关键之一在于提升大学生的数字素养。深度学习作为教育数字化转型下的主要学习方式,在培养数字社会的高阶创新人才方面具有显著作用。该研究立足数字社会发展,综合运用文献研究、问卷调查等方... 教育数字化转型是数字中国建设的基础支撑,其关键之一在于提升大学生的数字素养。深度学习作为教育数字化转型下的主要学习方式,在培养数字社会的高阶创新人才方面具有显著作用。该研究立足数字社会发展,综合运用文献研究、问卷调查等方法,构建深度学习、批判性思维、数字素养的关系模型。以广州中医药大学为例,选取204名大学生为研究对象,采用结构方程模型与中介效应分析,探索其作用关系和影响效应。结果表明,深度学习动机、深度学习策略、深度学习投入、批判性思维、数字素养之间显著正相关;深度学习动机、深度学习策略对数字素养有直接的正向影响;深度学习投入对数字素养无直接影响;批判性思维在深度学习动机、深度学习策略对数字素养之间的中介效应显著。该研究能够为中医院校大学生数字素养的培养提供理论借鉴与实践参考。 展开更多
关键词 深度学习动机 深度学习策略 深度学习投入 批判性思维 数字素养
下载PDF
在线研修中教师深度学习测评模型构建及支持对策研究
2
作者 李宝敏 张杨紫棋 《中国电化教育》 北大核心 2024年第6期70-77,共8页
在线研修是“互联网+”时代促进教师专业发展的重要途径之一,随着国家智慧教育云平台服务的增强,在线研修的教师人数逐年增长,如何评价在线研修中教师深度学习成为亟需解决的问题。该研究基于比格斯的学习一般过程模型与布鲁姆认知目标... 在线研修是“互联网+”时代促进教师专业发展的重要途径之一,随着国家智慧教育云平台服务的增强,在线研修的教师人数逐年增长,如何评价在线研修中教师深度学习成为亟需解决的问题。该研究基于比格斯的学习一般过程模型与布鲁姆认知目标、辛普森动作技能目标和克拉斯沃尔情感目标分类体系构建了教师深度学习评价模型,并从中提取了价值认同、理解迁移、系统建构、反思批判与问题解决五个评价深度学习的核心要素。基于评价模型编制了“教师深度学习评价量表”,从教师先验知识、学习过程和学习结果三个方面对917位教师进行测评。研究发现:(1)参与在线研修的教师深度学习比例较低;(2)不同教龄、先验知识的教师在深度学习时存在显著的群体差异;(3)成就动机与元认知策略是影响教师深度学习的关键因素;(4)教师深度学习的五大核心能力发展尚不均衡,教师联系型及创新型问题解决能力有待加强,批判性思维能力有待改善,教师对在线研修价值认同感不足,研修内容与学习需求的匹配度有待提升。鉴于此,提出了促进教师深度学习的策略与建议。 展开更多
关键词 在线研修 教师学习 深度学习 深度学习评价 评价模型
下载PDF
深度学习迭代重建算法优化儿童头颅CT图像噪声和图像纹理的可行性 被引量:1
3
作者 田宏伟 彭芸 +4 位作者 刘道永 李昊岩 刘勇 洪天予 孙记航 《中国医学影像学杂志》 CSCD 北大核心 2024年第2期193-198,共6页
目的评价深度学习迭代重建(DLIR)算法与常规自适应迭代重建(ASIR-V)算法对儿童头颅外伤CT图像噪声和图像纹理的优化程度及图像显示效果的差异。资料与方法回顾性选取2020年12月7—11日首都医科大学附属北京儿童医院影像中心80例儿童头颅... 目的评价深度学习迭代重建(DLIR)算法与常规自适应迭代重建(ASIR-V)算法对儿童头颅外伤CT图像噪声和图像纹理的优化程度及图像显示效果的差异。资料与方法回顾性选取2020年12月7—11日首都医科大学附属北京儿童医院影像中心80例儿童头颅CT,扫描方案为低辐射剂量轴扫,电压120 kV,电流150~220 mA。将得到的原始数据重建为5 mm厚层与0.625 mm薄层的脑窗、骨窗图像,分别重建为50%ASIR-V、高权重DLIR图像(DL-H),共8组图像。应用4分制主观评价脑沟脑室、脑灰白质与颅骨显示情况,并统计各组图像的病变数量;客观评价测量基底节层面的灰质和白质的CT值和噪声值,并计算对比噪声比,同时在同层面测量模糊程度指数,比较两种图像重建方法的差异。结果相较于50%ASIR-V图像,2种层厚的DL-H均可以提升脑沟脑室、脑实质显示能力(W=5.5~22.2,P均<0.05),5 mm的50%ASIR-V与0.625 mm的DL-H图像脑沟脑室、脑实质显示能力差异无统计学意义(W=0.9、2.0,P=0.32、0.05)。骨质显示能力方面,所有图像均可以达到满分4.0分。5 mm的50%ASIR-V与DL-H图像均可以在80例患者中发现共35处病变,包括出血病变12处,颅内积气1处,骨折9处,头皮软组织肿胀13处。客观评分方面,DL-H图像噪声低于50%ASIR-V图像(t=21.4~35.7,P均<0.05),0.625 mm的DL-H与5 mm的50%ASIR-V图像噪声及对比噪声比差异无统计学意义(t=1.7~2.2,P均≥0.05)。模糊程度指数显示DL-H优于50%ASIR-V图像(t=6.1、10.0,P均<0.05),0.625 mm的DL-H与5 mm的50%ASIR-V模糊程度指数差异无统计学意义(t=2.6,P=0.28)。结论DLIR可以降低图像噪声,改善图像纹理,整体提升儿童头颅外伤CT图像质量,0.625 mm的DL-H图像质量接近5 mm的50%ASIR-V图像,可以达到诊断要求,使进一步降低儿童头颅外伤的辐射剂量成为可能。 展开更多
关键词 体层摄影术 X线计算机 头颅 儿童 低剂量 深度学习
下载PDF
知识、想象力与深度学习——与吉莉安·贾德森教授关于基兰·伊根的研究的对话 被引量:2
4
作者 李新 郭元祥 +1 位作者 容翠 《华东师范大学学报(教育科学版)》 北大核心 2024年第6期125-136,共12页
20世纪80、90年代以来,加拿大西蒙菲莎大学基兰•伊根教授带领团队开展了“富有想象力的教育”“深度学习研究项目”等研究,系统地探讨了课程知识、学习、理解、想象与想象力的本质,以及知识理解的本质与类型、知识与想象力的关系,开发... 20世纪80、90年代以来,加拿大西蒙菲莎大学基兰•伊根教授带领团队开展了“富有想象力的教育”“深度学习研究项目”等研究,系统地探讨了课程知识、学习、理解、想象与想象力的本质,以及知识理解的本质与类型、知识与想象力的关系,开发了想象力培养的认知工具,提出了在学科教学中培育学生想象力的教学策略。在深度学习研究中,建立了深度学习的知识标准和教学基本准则。2006年以来,针对我国中小学课程实施中存在的问题,我们组建了深度教学研究团队。围绕教学价值观、课程知识观、教学过程观和学习活动观的转变,采取3K研究方式,探讨了指向核心素养的教与学的理念与策略,并开展了国际合作研究。围绕基兰•伊根教授关于知识、想象力与深度学习研究等方面的创新贡献,对话和访谈西蒙菲莎大学吉莉安•贾德森教授,以期为我国深化课程与教学改革,破解核心素养发展的难题提供借鉴。 展开更多
关键词 课程知识观 富有想象力的教育 学科想象 认知工具 深度学习
下载PDF
基于深度学习的图像重建算法在下肢动脉病变CTA诊断中的研究 被引量:2
5
作者 陈芸 朱彦 +3 位作者 王扬 赵天 李月峰 陈兴兵 《中国医疗设备》 2024年第3期134-138,共5页
目的 探讨基于深度学习的图像重建算法对下肢动脉病变CT血管成像(Computed Tomography Angiography,CTA)的诊断价值。方法 回顾性收集2021年6月至2022年2月于我院就诊的51例下肢动脉狭窄或闭塞患者的CTA检查资料(65条下肢动脉)。分别基... 目的 探讨基于深度学习的图像重建算法对下肢动脉病变CT血管成像(Computed Tomography Angiography,CTA)的诊断价值。方法 回顾性收集2021年6月至2022年2月于我院就诊的51例下肢动脉狭窄或闭塞患者的CTA检查资料(65条下肢动脉)。分别基于深度学习的图像重建(Deep Learning Image Reconstruction,DLIR)算法和混合迭代重建(Hybrid Iterative Reconstruction,HIR)算法对CTA图像进行重建,以HIR法为参照进行质量评估;两位医师在不同重建算法下对血管狭窄的部位和程度进行评估,并采用Kappa检验观察者间一致性;以数字减影血管造影作为“金标准”比较HIR法和DLIR法诊断下肢动脉中度和重度狭窄的效能。结果与HIR法相比,DLIR法图像质量的噪声显著降低(Z膝上动脉=8.36,Z膝下动脉=9.46,Z足背动脉=7.19,均P<0.001),信噪比(Z膝上动脉=-7.32,Z膝下动脉=-7.91,Z足背动脉=-8.45,P<0.001)及对比噪声比(Z膝上动脉=-8.66,Z膝下动脉=-9.21,Z足背动脉=-8.52,均P<0.001)显著提高。DLIR法对动脉狭窄或闭塞程度的识别和评估均显示出更高的观察者间一致性(Kappa=0.86)。与HIR法相比,DLIR法的图像对膝下动脉重度狭窄的敏感度(72.2%vs.94.4%)、特异性(78.7%vs.95.7%),足背动脉中度狭窄的特异性(86.0%vs.97.7%)及重度狭窄的敏感度(50.0%vs.87.5%)均显著提高(P<0.05)。结论 DLIR算法可有效改善下肢动脉的CTA图像质量,并获得更优的诊断效能。 展开更多
关键词 下肢动脉 深度学习 混合迭代重建 计算机断层扫描血管造影 数字减影血管造影
下载PDF
基于机器深度学习的小麦播种机控制系统研究 被引量:3
6
作者 单绍隆 康华 《农机化研究》 北大核心 2024年第7期208-211,共4页
针对我国小麦播种机自动控制系统的可靠性及灵敏度不高的问题,基于机器深度学习对小麦播种机的控制系统进行了设计和改进。小麦播种机的主要组成包括控制系统、排种系统、监控系统、电力系统、机架和驾驶室、覆土镇压和排肥装置。为了... 针对我国小麦播种机自动控制系统的可靠性及灵敏度不高的问题,基于机器深度学习对小麦播种机的控制系统进行了设计和改进。小麦播种机的主要组成包括控制系统、排种系统、监控系统、电力系统、机架和驾驶室、覆土镇压和排肥装置。为了使播种机的控制系统能有效进行图像检测识别,提升播种机的控制精度,采用机器深度学习中的卷积神经网络算法对控制系统进行设计,并采用迁移学习的方式对模型进行训练和检测。为了验证播种机控制系统的性能,对其进行播种精度控制和播种性能测试试验,结果表明:播种机的精度和性能均符合播种机的设计要求。 展开更多
关键词 小麦播种机 自动控制系统 机器深度学习 卷积神经网络算法 迁移学习
下载PDF
深度学习的自然场景文本识别方法综述 被引量:1
7
作者 曾凡智 冯文婕 周燕 《计算机科学与探索》 CSCD 北大核心 2024年第5期1160-1181,共22页
自然场景文本识别在学术研究和实际应用中具有重要价值,已经成为计算机视觉领域的研究热点之一。然而,识别过程存在文本风格多样、背景环境复杂等挑战,导致识别效率和准确率不佳。传统的基于手工设计特征文本识别方法由于其有限的表示能... 自然场景文本识别在学术研究和实际应用中具有重要价值,已经成为计算机视觉领域的研究热点之一。然而,识别过程存在文本风格多样、背景环境复杂等挑战,导致识别效率和准确率不佳。传统的基于手工设计特征文本识别方法由于其有限的表示能力,不足以有效地应对复杂的自然场景文本识别任务。近年来,采用深度学习方法在自然场景文本识别中取得了重大进展,系统地梳理了近年来相关研究工作。首先,根据是否需要对单字符进行分割,将自然场景文本识别方法分为基于分割与无需分割的方法,再根据其技术实现特点将无需分割的方法进行细分,并对各类最具有代表性的方法工作原理进行了阐述。然后,介绍了当前常用数据集以及评价指标,并在数据集上对各类方法进行了性能对比,从多个方面讨论了各类方法的优势与局限性。最后,指出基于深度学习的自然场景文本识别研究存在的不足和难点,对其未来的发展趋势进行了展望。 展开更多
关键词 文本识别 深度学习 自然场景
下载PDF
基于深度学习的无锚框目标检测算法综述 被引量:2
8
作者 高海涛 朱超涵 +2 位作者 张天棋 郝飞 茅新宇 《机床与液压》 北大核心 2024年第1期202-209,共8页
近年来,基于深度学习的无锚框目标检测算法备受关注。为了深入理解无锚框检测算法,对比分析了基于深度学习的无锚框检测算法的原理机制、网络结构、核心特性以及优缺点,归纳总结了无锚框检测算法的核心技术,并在同一数据集上通过性能实... 近年来,基于深度学习的无锚框目标检测算法备受关注。为了深入理解无锚框检测算法,对比分析了基于深度学习的无锚框检测算法的原理机制、网络结构、核心特性以及优缺点,归纳总结了无锚框检测算法的核心技术,并在同一数据集上通过性能实验研究上述算法的性能,总结提出基于深度学习的目标检测算法未来的研究方向。 展开更多
关键词 无锚框目标检测算法 深度学习 算法比较
下载PDF
深度学习下吊装作业工人防护装备及吊钩检测方法 被引量:1
9
作者 李华 薛曦澄 +2 位作者 吴立舟 王岩彬 钟兴润 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期1027-1035,共9页
为解决危大工程中吊装作业安全管理的问题,基于深度学习构建目标检测算法(You Only Look Once version 5,YOLOv5)网络模型,针对进入吊装作业区域内人员的防护装备进行多目标融合检测,并对吊钩在施工过程中的状态进行检测。在原始的检测... 为解决危大工程中吊装作业安全管理的问题,基于深度学习构建目标检测算法(You Only Look Once version 5,YOLOv5)网络模型,针对进入吊装作业区域内人员的防护装备进行多目标融合检测,并对吊钩在施工过程中的状态进行检测。在原始的检测网络模型中引入4种注意力机制,并通过5种训练模型的结果对比分析,进而选择卷积块注意力模块(Convolutional Block Attention Module,CBAM)最优模型。优化后的检测模型对安全帽的平均识别精度达86.5%,对反光衣的平均识别精度达83.0%,对吊钩的状态识别精度达92.0%。将训练好的人员检测模型和吊钩检测模型打包成exe执行文件,应用到施工安全管理人员的中控平台,可帮助管理人员更好地判断吊装作业的工作情况,进而及时进行风险管控。 展开更多
关键词 安全工程 深度学习 注意力机制 exe文件打包 施工管理
下载PDF
基于深度学习与机器视觉的起重机吊装安全监测方法 被引量:1
10
作者 薛志钢 许晨旭 +1 位作者 巫波 闻东东 《科技创新与应用》 2024年第2期1-5,共5页
随着我国经济的快速发展,各类大型工程层出不穷,对起重机吊装作业的需求不断增加。然而,吊装作业过程中依然存在众多的安全隐患,极易造成人员伤亡等安全事故。因此,该文提出一种基于深度学习和机器视觉的起重机吊装安全监测方法。将深... 随着我国经济的快速发展,各类大型工程层出不穷,对起重机吊装作业的需求不断增加。然而,吊装作业过程中依然存在众多的安全隐患,极易造成人员伤亡等安全事故。因此,该文提出一种基于深度学习和机器视觉的起重机吊装安全监测方法。将深度学习与机器视觉相结合对监控图像中的被吊物和工人进行识别和定位,同时可自主判断工人是否佩戴安全帽。根据监测模型的识别和定位信息,获得工人与被吊物之间的空间关系,为起重机吊装过程提供安全预警信息。为了提高所提方法的实用性和便携性,开发一个起重机吊装安全智能监测系统,不仅可以实时显示监控图像的识别结果,而且能够输出场景的语义描述、发出安全预警信号。 展开更多
关键词 深度学习 机器视觉 吊装监测 智能监测 安全预警
下载PDF
基于组合深度学习的轨道交通短时进站客流预测模型 被引量:3
11
作者 李淑庆 李伟 +1 位作者 刘耀鸿 马波 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期92-99,共8页
针对轨道交通短时进站客流考虑不充分和特征学习不全面而导致预测精度不高的问题,选取客流特征、天气、空气质量和道路交通拥堵指数等多个因素,提出了一种基于组合深度学习的轨道交通短时进站客流预测模型(CNN-ResNet-BiLSTM)。基于卷... 针对轨道交通短时进站客流考虑不充分和特征学习不全面而导致预测精度不高的问题,选取客流特征、天气、空气质量和道路交通拥堵指数等多个因素,提出了一种基于组合深度学习的轨道交通短时进站客流预测模型(CNN-ResNet-BiLSTM)。基于卷积神经网络(CNN)对多因素客流时间序列进行自动提取,在CNN网络中插入多个残差神经网络(ResNet)来加深网络深度,利用双向长短时记忆神经网络(BiLSTM)捕捉前后两个方向的客流时间序列特征并得到预测结果;以杭州市全网80个站点工作日的进站客流为例,验证了该模型的有效性。研究结果表明:与常用的几种模型相比,多因素CNN-ResNet-BiLSTM组合模型的均方根误差(E RMS)至少降低了8.50%,平均绝对误差(E MA)至少降低了6.74%,平均绝对百分比误差(E MPA)至少降低了6.52%。 展开更多
关键词 交通工程 短时客流预测 组合深度学习 轨道进站客流
下载PDF
基于数字孪生和深度学习的结构损伤识别 被引量:2
12
作者 唐和生 王泽宇 陈嘉缘 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第1期110-121,共12页
土木工程实际结构损伤状态的时间跨度通常只占总生命周期的一小部分。为解决传统基于数据驱动的结构损伤识别方法缺乏足够多的损伤训练数据的问题,提出结合数字孪生和深度学习的结构损伤识别方法,并应用于实际工程。该方法利用数值仿真... 土木工程实际结构损伤状态的时间跨度通常只占总生命周期的一小部分。为解决传统基于数据驱动的结构损伤识别方法缺乏足够多的损伤训练数据的问题,提出结合数字孪生和深度学习的结构损伤识别方法,并应用于实际工程。该方法利用数值仿真模型和在线监测数据构建结构的数字孪生,以获得不同损伤工况下结构动力响应的“大数据”;为了摆脱对外激励信息的依赖,应用经验模态分解法和传递率函数对得到的数据进行预处理;将预处理后的固有模态传递率函数数据作为深度学习的输入进行训练,实现结构的损伤识别。为验证方法的有效性,对实际结构未经训练的监测数据进行分析,结果表明,该方法泛化能力良好,能够有效识别结构损伤状况。通过数字孪生技术解决了传统方法数据匮乏的问题,不需要任何地震信息,利用固有模态传递率函数数据训练的深度神经网络仍能保持较高的损伤识别准确率,二者结合可以使工程结构健康监测更为主动、可靠、高效。 展开更多
关键词 数字孪生 深度学习 固有模态传递率函数 损伤识别 结构健康监测
下载PDF
雷达信号与遥感地图融合的深度学习低慢小目标检测算法 被引量:2
13
作者 高梅国 林升泰 《信号处理》 CSCD 北大核心 2024年第1期82-93,共12页
雷达复杂环境低慢小目标检测是一项具有挑战性的任务,而利用深度学习以及数据特征融合等方法是解决这一难题的有效手段。本文在雷达地图融合检测网络(Radar Map fusion Detection Network,RMDN)的基础上进行了优化,主要优化方向为将雷... 雷达复杂环境低慢小目标检测是一项具有挑战性的任务,而利用深度学习以及数据特征融合等方法是解决这一难题的有效手段。本文在雷达地图融合检测网络(Radar Map fusion Detection Network,RMDN)的基础上进行了优化,主要优化方向为将雷达与地图信息在检测过程中进行重要性程度区分,具体优化内容为减少地图特征提取模块的网络深度,加入通道注意力机制,让神经网络自主学习雷达信息与地图信息特征的权重,使神经网能够更好地利用地图信息对雷达目标进行辅助检测。在此优化基础上,本文重新设计出了雷达地图融合检测网络RMDN-V2。算法的主要思想为利用卫星遥感地图来提供背景环境信息,作为雷达信号检测的辅助,通过将目标背景中的特征信息融入检测决策中,提高目标检测的准确性和鲁棒性,减少对强杂波和移动物体的干扰敏感性,改善目标检测算法在复杂环境下的表现。最后的无人机雷达实测数据实验结果表明,本文所做的针对性优化是有效的,RMDN-V2的检测性能优于原始的RMDN,同时本文算法检测性能远超传统的雷达检测算法,同时也优于目前主流的一些深度学习雷达目标检测算法。本文为解决当下低慢小目标检测的难题提出了新的算法。 展开更多
关键词 雷达目标检测 深度学习 雷达信号和遥感地图融合 低慢小目标检测
下载PDF
一种基于知识树的科技前沿探测方法——以深度学习领域为例 被引量:1
14
作者 曾文 闫甜甜 +1 位作者 刘晓琳 张蕾 《情报理论与实践》 北大核心 2024年第3期158-162,共5页
[目的/意义]当前全球科技竞争愈加剧烈,准确把握未来科技前沿是科技竞争取得胜利的关键,科技前沿探测是科技情报研究的热点问题之一。[方法/过程]文章提出一种基于知识树的科技前沿探测方法,通过科技前沿知识树反映领域科技前沿的发展信... [目的/意义]当前全球科技竞争愈加剧烈,准确把握未来科技前沿是科技竞争取得胜利的关键,科技前沿探测是科技情报研究的热点问题之一。[方法/过程]文章提出一种基于知识树的科技前沿探测方法,通过科技前沿知识树反映领域科技前沿的发展信息,探索解决科技前沿探测过程中存在的信息冗余、探测结果不准确等问题的方法和途径,并以深度学习领域为例进行了实证研究。[结果/结论]研究结果表明,基于知识树的科技前沿探测方法可以在一定程度上提高科技前沿探测过程的效率,改善科技前沿探测结果的质量,可以为面向特定领域的科技前沿研究提供参考。 展开更多
关键词 知识树 科技前沿 科技情报 深度学习
下载PDF
面向深度学习的“共生式合作学习”教学模式——以企业内部控制与风险管理课程为例 被引量:1
15
作者 谭玉林 万凯 《广西职业技术学院学报》 2024年第4期116-124,共9页
常规合作学习模式难以保证深度学习的发生。研究基于“生成课堂”理念,聚焦生成式集体研讨、合作式学习环境和多样式教学支架3个维度,构建了“共生式合作学习”教学模式,并在企业内部控制与风险管理课程中进行了实证研究。通过对比实验... 常规合作学习模式难以保证深度学习的发生。研究基于“生成课堂”理念,聚焦生成式集体研讨、合作式学习环境和多样式教学支架3个维度,构建了“共生式合作学习”教学模式,并在企业内部控制与风险管理课程中进行了实证研究。通过对比实验班(采用共生式合作学习)和对照班(传统混合式教学)的教学效果,运用知识建构行为分析、教学效果测评等方法进行评估,结果显示:实验班的知识建构水平和教学效果均显著优于对照班。这表明“共生式合作学习”教学模式能够激发学生主动学习动机,提升学生的知识建构水平、团队协作能力和批判性思维能力等,对提升职业教育学生的深度学习能力具有积极的作用,为教学改革提供实践依据。 展开更多
关键词 深度学习 共生式合作学习 教学支架 生成课堂
下载PDF
基于深度学习的钝体断面外形气动性能高效预测方法 被引量:1
16
作者 李少鹏 李海 李珂 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第1期122-129,共8页
对于气动性能,钝体断面的气动外形非常重要,采用传统风洞试验及CFD模拟计算得到钝体断面气动性能需消耗大量时间,大大影响钝体断面气动外形的气动性能评估效率。通过卷积神经网络深度学习技术实现对气动性能的快速预测,深度学习模型训... 对于气动性能,钝体断面的气动外形非常重要,采用传统风洞试验及CFD模拟计算得到钝体断面气动性能需消耗大量时间,大大影响钝体断面气动外形的气动性能评估效率。通过卷积神经网络深度学习技术实现对气动性能的快速预测,深度学习模型训练完成后,输入形状信息和与形状相关的流场信息,即可输出不同几何形状下的阻力系数,进而得到钝体断面的气动性能。为寻找性能最优的深度学习模型,通过综合判定误差和参数量大小对卷积神经网络结构的深度和宽度进行优化。对深度学习模型输出阻力系数与CFD计算结果进行对比发现,误差符合预期要求,并且相较于传统方法,基于深度学习网络的预测所需时间达到数量级的提升,未来可作为钝体断面气动外形优化的关键方法。 展开更多
关键词 桥梁静风力 钝体断面 气动性能 深度学习 卷积神经网络
下载PDF
基于深度学习的二维人体姿态估计研究进展 被引量:1
17
作者 卢官明 卢峻禾 陈晨 《南京邮电大学学报(自然科学版)》 北大核心 2024年第1期44-55,共12页
人体姿态估计在人体行为识别、人机交互、体育运动分析等方面有着广泛的应用前景,是计算机视觉领域的一个研究热点。在最近的十年中,得益于深度学习技术,大量的研究工作极大地推动了人体姿态估计技术的发展,但由于受训练样本不足、人体... 人体姿态估计在人体行为识别、人机交互、体育运动分析等方面有着广泛的应用前景,是计算机视觉领域的一个研究热点。在最近的十年中,得益于深度学习技术,大量的研究工作极大地推动了人体姿态估计技术的发展,但由于受训练样本不足、人体姿态的多变性、遮挡、环境的复杂性等因素影响,人体姿态估计仍然面临着诸多的挑战。文中对近年来基于深度学习的2D人体姿态估计方法进行归纳和总结,着重分析一些有代表性的人体姿态估计方法的思路及工作原理,以便研究人员了解当前的研究现状、面临的挑战以及今后的研究方向,拓展研究思路。 展开更多
关键词 人体姿态估计 单人体姿态估计 多人体姿态估计 深度学习 关键点检测
下载PDF
基于K-means聚类和特征空间增强的噪声标签深度学习算法 被引量:1
18
作者 吕佳 邱小龙 《智能系统学报》 CSCD 北大核心 2024年第2期267-277,共11页
深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样... 深度学习中神经网络的性能依赖于高质量的样本,然而噪声标签会降低网络的分类准确率。为降低噪声标签对网络性能的影响,噪声标签学习算法被提出。该算法首先将训练样本集划分成干净样本集和噪声样本集,然后使用半监督学习算法对噪声样本集赋予伪标签。然而,错误的伪标签以及训练样本数量不足的问题仍然限制着噪声标签学习算法性能的提升。为解决上述问题,提出基于K-means聚类和特征空间增强的噪声标签深度学习算法。首先,该算法利用K-means聚类算法对干净样本集进行标签聚类,并根据噪声样本集与聚类中心的距离大小筛选出难以分类的噪声样本,以提高训练样本的质量;其次,使用mixup算法扩充干净样本集和噪声样本集,以增加训练样本的数量;最后,采用特征空间增强算法抑制mixup算法新生成的噪声样本,从而提高网络的分类准确率。并在CIFAR10、CIFAR100、MNIST和ANIMAL-10共4个数据集上试验验证了该算法的有效性。 展开更多
关键词 噪声标签学习 深度学习 半监督学习 机器学习 神经网络 K-MEANS聚类 特征空间增强 mixup算法
下载PDF
基于深度学习的水下目标识别技术 被引量:1
19
作者 丁元明 徐利华 侯孟珂 《舰船科学技术》 北大核心 2024年第1期143-147,共5页
在水下复杂场景下,目标对象具有姿态不同、遮挡和背景复杂等特点,这对卷积网络的特征提取能力提出巨大挑战。Mask R-CNN算法在水下目标特征提取过程中也存在特征提取能力欠佳的问题,导致算法在水下目标检测准确性较差。因此,提出一种基... 在水下复杂场景下,目标对象具有姿态不同、遮挡和背景复杂等特点,这对卷积网络的特征提取能力提出巨大挑战。Mask R-CNN算法在水下目标特征提取过程中也存在特征提取能力欠佳的问题,导致算法在水下目标检测准确性较差。因此,提出一种基于Mask R-CNN的改进水下目标目标识别方法。首先可采用金字塔切分的通道注意力模块PAS代替采用了ResNet50的3×3卷积模块,该模块可通过对每个通道进行金字塔的切分,针对通道切分完成后所得出来的通道特征图上的空间信息来进行不用的尺度特征层提取;同时通过采用另一种更加安全稳定和高效的ECANEt通道注意力模块代替PAS模块中的SENet通道注意力模,对多维度的通道注意力权重进行特征重标定;最后对特征金字塔FPN的网络结构进行改进,加强不同特征层之间的信息融合。根据不同场景下进行的实验对比,改进后的网络能够提高水下目标识别的准确率,平均检测精度可达91.3%。本文所提出的改进Mask RCNN网络模型,能够适应水下复杂多变的场景,为水下目标的识别提供理论依据与技术方案。 展开更多
关键词 水下目标识别 Mask R-CNN 深度学习
下载PDF
深度学习在活动构造与地貌研究中的应用
20
作者 刘鑫 王诗柔 +7 位作者 石许华 苏程 鲁晨妍 钱晓园 孙侨阳 邓洪旦 杨蓉 程晓敢 《地震地质》 EI CSCD 北大核心 2024年第2期277-296,共20页
活动构造与地貌学主要涉及活动构造的运动学、地貌的演化过程及其相关动力机制,该研究方向是近几十年来地球系统科学交叉研究的热点之一。随着大数据与机器学习研究的发展,活动构造与地貌学的研究和深度学习的结合已成为该领域中受到广... 活动构造与地貌学主要涉及活动构造的运动学、地貌的演化过程及其相关动力机制,该研究方向是近几十年来地球系统科学交叉研究的热点之一。随着大数据与机器学习研究的发展,活动构造与地貌学的研究和深度学习的结合已成为该领域中受到广泛关注的新兴研究方向,并产出了大量优秀成果。文中总结并综述了现今深度学习在活动构造与地貌研究中的数据来源,以及利用深度学习的方法定量化解决活动构造与地貌中的重要科学问题(包括冰川识别、火山活动与地貌、水系分析、滑坡监测和地表形变等)。基于对上述实例的探索,文中运用深度学习中的卷积神经网络,对华南东南部福建地区的花岗岩岩石构造裂缝开展了基于高精度无人机航拍影像的深度学习自动识别。所搭建的卷积网络模型在55min的运行时间内自动识别出人工需消耗近一周才可识别的9000余条裂缝,并获得了85%的查准率与89%的查全率,表明该模型在准确识别构造裂缝的同时显著提升了工作效率。文中最后讨论并展望了未来深度学习方法在活动构造与地貌学领域的发展前景。 展开更多
关键词 机器学习 深度学习 活动构造 地貌 自动识别
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部