Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki...Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.展开更多
AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hos...AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application.展开更多
Objective To develope a deep learning algorithm for pathological classification of chronic gastritis and assess its performance using whole-slide images(WSIs).Methods We retrospectively collected 1,250 gastric biopsy ...Objective To develope a deep learning algorithm for pathological classification of chronic gastritis and assess its performance using whole-slide images(WSIs).Methods We retrospectively collected 1,250 gastric biopsy specimens(1,128 gastritis,122 normal mucosa)from PLA General Hospital.The deep learning algorithm based on DeepLab v3(ResNet-50)architecture was trained and validated using 1,008 WSIs and 100 WSIs,respectively.The diagnostic performance of the algorithm was tested on an independent test set of 142 WSIs,with the pathologists’consensus diagnosis as the gold standard.Results The receiver operating characteristic(ROC)curves were generated for chronic superficial gastritis(CSuG),chronic active gastritis(CAcG),and chronic atrophic gastritis(CAtG)in the test set,respectively.The areas under the ROC curves(AUCs)of the algorithm for CSuG,CAcG,and CAtG were 0.882,0.905 and 0.910,respectively.The sensitivity and specificity of the deep learning algorithm for the classification of CSuG,CAcG,and CAtG were 0.790 and 1.000(accuracy 0.880),0.985 and 0.829(accuracy 0.901),0.952 and 0.992(accuracy 0.986),respectively.The overall predicted accuracy for three different types of gastritis was 0.867.By flagging the suspicious regions identified by the algorithm in WSI,a more transparent and interpretable diagnosis can be generated.Conclusion The deep learning algorithm achieved high accuracy for chronic gastritis classification using WSIs.By pre-highlighting the different gastritis regions,it might be used as an auxiliary diagnostic tool to improve the work efficiency of pathologists.展开更多
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)National Natural Science Foundation of China(Nos.61771123 and 62171116)+1 种基金Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2022044)。
文摘Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.
文摘AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application.
文摘Objective To develope a deep learning algorithm for pathological classification of chronic gastritis and assess its performance using whole-slide images(WSIs).Methods We retrospectively collected 1,250 gastric biopsy specimens(1,128 gastritis,122 normal mucosa)from PLA General Hospital.The deep learning algorithm based on DeepLab v3(ResNet-50)architecture was trained and validated using 1,008 WSIs and 100 WSIs,respectively.The diagnostic performance of the algorithm was tested on an independent test set of 142 WSIs,with the pathologists’consensus diagnosis as the gold standard.Results The receiver operating characteristic(ROC)curves were generated for chronic superficial gastritis(CSuG),chronic active gastritis(CAcG),and chronic atrophic gastritis(CAtG)in the test set,respectively.The areas under the ROC curves(AUCs)of the algorithm for CSuG,CAcG,and CAtG were 0.882,0.905 and 0.910,respectively.The sensitivity and specificity of the deep learning algorithm for the classification of CSuG,CAcG,and CAtG were 0.790 and 1.000(accuracy 0.880),0.985 and 0.829(accuracy 0.901),0.952 and 0.992(accuracy 0.986),respectively.The overall predicted accuracy for three different types of gastritis was 0.867.By flagging the suspicious regions identified by the algorithm in WSI,a more transparent and interpretable diagnosis can be generated.Conclusion The deep learning algorithm achieved high accuracy for chronic gastritis classification using WSIs.By pre-highlighting the different gastritis regions,it might be used as an auxiliary diagnostic tool to improve the work efficiency of pathologists.