期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于深度学习的智能电网窃电检测混合模型研究 被引量:1
1
作者 廖银玲 李金灿 +2 位作者 王冰 张君 梁耀元 《电信科学》 北大核心 2024年第2期72-82,共11页
针对传统窃电检测模型受维度诅咒、类不平衡等问题,提出一种能有效检测智能电网窃电行为的混合深度学习模型,利用深度学习卷积神经网络(AlexNet)处理维度诅咒问题,显著提升数据处理的准确性;通过自适应增强(Ada Boost)对正常和异常用电... 针对传统窃电检测模型受维度诅咒、类不平衡等问题,提出一种能有效检测智能电网窃电行为的混合深度学习模型,利用深度学习卷积神经网络(AlexNet)处理维度诅咒问题,显著提升数据处理的准确性;通过自适应增强(Ada Boost)对正常和异常用电行为分类,进一步提高分类精度;使用欠采样技术解决类不平衡问题,确保模型在各类数据的均衡性能;利用人工蜂群算法对AdaBoost和AlexNet的超参数进行优化,有效提高整体模型性能。使用真实智能电表数据集评估混合模型的有效性,与同类模型相比,提出的混合深度学习模型在准确率、精确度、召回率、F1分数、马修斯相关系数(MCC)和曲线下面积-接收者操作特征曲线(AUC-ROC)分数上分别达到了88%、86%、84%、85%、78%和91%,不仅提高了用电行为监测的准确性,也为电力系统的智能分析提供了新视角。 展开更多
关键词 深度学习卷积神经网络 自适应增强 深度驱动模型 窃电检测 特征提取
下载PDF
基于深度卷积网络的高分遥感图像语义分割 被引量:2
2
作者 蔡烁 胡航滔 王威 《信号处理》 CSCD 北大核心 2019年第12期2010-2016,共7页
随着我国高分对地观测系统的不断发展,对高分影像智能化分析与处理的应用需求愈来愈多,基于深度学习语义分割的影像分类也受到高度关注。作为近景图像语义分割的热点模型,Deeplab网络在应用时取得了良好的效果。为了解决多尺度高分辨率... 随着我国高分对地观测系统的不断发展,对高分影像智能化分析与处理的应用需求愈来愈多,基于深度学习语义分割的影像分类也受到高度关注。作为近景图像语义分割的热点模型,Deeplab网络在应用时取得了良好的效果。为了解决多尺度高分辨率遥感影像语义分割问题,本文首先利用空洞卷积扩大Atrous空间金字塔池化(ASPP)结构的感受野,然后对DeepLabv3进行改进并将其用于高分2号遥感影像的分类处理。我们以郴州地区的高分遥感影像为研究对方法进行了验证,首先对原始影像进行预处理,再对预处理图像进行数据增强与扩充,最后通过对不同参数条件下的分类结果进行对比,分析该模型的适应性和精确性。在我们的数据集中,本文方法的实验分类像素精度为88.2%,MIoU达到72.5%,得到了比Deeplab更好的分类效果。 展开更多
关键词 遥感图像分类 语义分割 深度学习卷积 神经网络
下载PDF
基于深度学习的点胶缺陷检测 被引量:7
3
作者 查广丰 胡泓 《电子技术与软件工程》 2019年第13期49-52,共4页
在工业生产中,主要利用自动点胶机对工业相机底座表面进行点胶,而实际生产中由于自动点胶机工艺水平的限制,胶水不可避免的破裂、胶水的宽度太厚或太细,胶水不足等现象也是屡见不鲜。生产中如果不能及时检测出此类不良产品,将会影响到... 在工业生产中,主要利用自动点胶机对工业相机底座表面进行点胶,而实际生产中由于自动点胶机工艺水平的限制,胶水不可避免的破裂、胶水的宽度太厚或太细,胶水不足等现象也是屡见不鲜。生产中如果不能及时检测出此类不良产品,将会影响到产品部件之间的连接,进而影响到整个产品的质量。因此,在需要点胶以实现粘合效果的各种应用中,严格控制点胶的质量是非常重要的。传统的点胶质量检测主要依靠手动检测方法,具有工作量大,工作效率低,检测精度不足等缺点,不能满足胶水检测的工业生产需求。为了提高点胶缺陷检测的准确率以及检测的稳定性,在本文中,我们使用深度学习卷积神经网络对胶条进行缺陷检测。通过模型的比较,最终采用LeNet-5卷积神经网络,同时在此基础上进行了改进,使得算法的鲁棒性以及准确率有所提升。 展开更多
关键词 点胶缺陷检测 深度学习卷积神经网络
下载PDF
基于深度学习的LAMOST星系星族参数测量
4
作者 王丽丽 张龙威 +2 位作者 杨光军 张俊亮 刘聪 《天文学报》 CAS CSCD 北大核心 2022年第5期110-118,共9页
星系的光谱包含其内部恒星的年龄和金属丰度等信息,从观测光谱数据中测量这些信息对于深入了解星系的形成和演化至关重要.LAMOST(Large Sky Area Multi-Object Fiber Spectroscopic Telescope)巡天发布了大量的星系光谱,这些高维光谱与... 星系的光谱包含其内部恒星的年龄和金属丰度等信息,从观测光谱数据中测量这些信息对于深入了解星系的形成和演化至关重要.LAMOST(Large Sky Area Multi-Object Fiber Spectroscopic Telescope)巡天发布了大量的星系光谱,这些高维光谱与它们的物理参数之间存在着高度的非线性关系.而深度学习适合于处理多维、海量的非线性数据,因此基于深度学习技术构建了一个8个卷积层+4个池化层+1个全连接层的卷积神经网络,对LAMOST Data Release 7(DR7)星系的年龄和金属丰度进行自动估计.实验结果表明,使用卷积神经网络通过星系光谱预测的星族参数与传统方法基本一致,误差在0.18dex以内,并且随着光谱信噪比的增大,预测误差越来越小.实验还对比了卷积神经网络与随机森林回归模型、深度神经网络的参数测量结果,结果表明卷积神经网络的结果优于其他两种回归模型. 展开更多
关键词 星系:恒星内容 星系:演化 方法:数据分析 方法:统计 深度学习:卷积神经网络
下载PDF
深度网络结构在行人检测任务中的性能对比 被引量:6
5
作者 常玲玲 马丙鹏 +1 位作者 常虹 丁志义 《计算机仿真》 北大核心 2017年第7期373-377,411,共6页
为了探究不同的深度卷积神经网络在行人检测任务中的性能差异,基于Faster-R-CNN深度学习算法框架,在Caltech行人数据集上对VGG-Net(Visual Geometry Group Net)和Res-Net(Residual Net)的性能进行了比较。通过改变数据集、改变训练数据... 为了探究不同的深度卷积神经网络在行人检测任务中的性能差异,基于Faster-R-CNN深度学习算法框架,在Caltech行人数据集上对VGG-Net(Visual Geometry Group Net)和Res-Net(Residual Net)的性能进行了比较。通过改变数据集、改变训练数据的数量、对比训练过程中各阶段的检测率,对两个网络的泛化能力、学习能力以及收敛速度进行了对比。实验结果表明,Res-Net相比于VGG-Net网络具有更快的收敛速度和更强的泛化能力;Res-Net的学习能力更强,随着训练数据的扩展,其性能提升更大。在行人检测任务中,Res-Net具有更好的性能。 展开更多
关键词 行人检测 卷积神经网络:深度学习
下载PDF
基于卷积神经网络的垃圾分类系统的研究 被引量:7
6
作者 汪洋 王小妮 +3 位作者 王育新 刘畅 熊继伟 韩定良 《传感器世界》 2020年第8期19-25,4,5,共9页
近些年来,我国各地陆续出台了垃圾分类的政策,垃圾分类也己经逐步成为了一种新的生活方式。但是垃圾分类又存在着分类效率低、分类成本高等问题。针对这些问题提出了—种基于卷积神经网络的垃圾分类系统。通过软硬件相结合的方式实现了... 近些年来,我国各地陆续出台了垃圾分类的政策,垃圾分类也己经逐步成为了一种新的生活方式。但是垃圾分类又存在着分类效率低、分类成本高等问题。针对这些问题提出了—种基于卷积神经网络的垃圾分类系统。通过软硬件相结合的方式实现了垃圾投放检测、垃圾种类识别、垃圾精确投放、结果反馈等功能。对于日常生活垃圾的识别率已达91.7%以上,具有识别率高、分类速度快、方便迭代更新、成本低等优点。 展开更多
关键词 垃圾分类 机器视觉:卷积神经网络:深度学习
下载PDF
关于深度学习的在线评论挖掘及需求获取方法 被引量:3
7
作者 李美 裴卉宁 丁满 《机械设计与研究》 CSCD 北大核心 2021年第6期184-189,共6页
针对传统用户需求获取方法数据量少、实时性差、成本过高等问题,提出一种基于深度学习获取用户生成内容(User-Generated Content,UGC)有效数据的在线评论挖掘及需求获取方法。以电子商务平台在线评论信息为数据源构建UCC在线评论语料集... 针对传统用户需求获取方法数据量少、实时性差、成本过高等问题,提出一种基于深度学习获取用户生成内容(User-Generated Content,UGC)有效数据的在线评论挖掘及需求获取方法。以电子商务平台在线评论信息为数据源构建UCC在线评论语料集,并提出了一种结合机器学习与人工审查的需求获取方式,通过卷积神经网络过滤大型UGC在线评论语句的非信息性内容,并利用数据分析工具对用户需求嵌入密集的相似性语句进行聚类分析,以避免对重复性内容进行采样。最后由专业分析人员对机器学习所提取的用户需求进行有效审查以提升需求信息准确率。通过老年代步车设计需求获取过程为案例验证模型,证明了所研究方法的高效性和准确性。利用对用户反馈信息的分析,为企业新产品研发提供了理论支持与技术支撑。 展开更多
关键词 用户需求 用户生成内容 在线评论挖掘 深度学习:卷积神经网络
原文传递
A multi-scale convolutional auto-encoder and its application in fault diagnosis of rolling bearings 被引量:9
8
作者 Ding Yunhao Jia Minping 《Journal of Southeast University(English Edition)》 EI CAS 2019年第4期417-423,共7页
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ... Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data. 展开更多
关键词 fault diagnosis deep learning convolutional auto-encoder multi-scale convolutional kernel feature extraction
下载PDF
Prediction of Departure Aircraft Taxi Time Based on Deep Learning 被引量:15
9
作者 LI Nan JIAO Qingyu +1 位作者 ZHU Xinhua WANG Shaocong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第2期232-241,共10页
With the continuous increase in the number of flights,the use of airport collaborative decision-making(ACDM)systems has been more and more widely spread.The accuracy of the taxi time prediction has an important effect... With the continuous increase in the number of flights,the use of airport collaborative decision-making(ACDM)systems has been more and more widely spread.The accuracy of the taxi time prediction has an important effect on the A-CDM calculation of the departure aircraft’s take-off queue and the accurate time for the aircraft blockout.The spatial-temporal-environment deep learning(STEDL)model is presented to improve the prediction accuracy of departure aircraft taxi-out time.The model is composed of time-flow sub-model(airport capacity,number of taxiing aircraft,and different time periods),spatial sub-model(taxiing distance)and environmental sub-model(weather,air traffic control,runway configuration,and aircraft category).The STEDL model is used to predict the taxi time of departure aircraft at Hong Kong Airport and the results show that the STEDL method has a prediction accuracy of 95.4%.The proposed model also greatly reduces the prediction error rate compared with the other machine learning methods. 展开更多
关键词 air transportation taxi time deep learning surface movement convolutional neural network(CNN)
下载PDF
Tongue image segmentation and tongue color classification based on deep learning 被引量:4
10
作者 LIU Wei CHEN Jinming +3 位作者 LIU Bo HU Wei WU Xingjin ZHOU Hui 《Digital Chinese Medicine》 2022年第3期253-263,共11页
Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe... Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe was used to label the tongue mask and Snake model to optimize the labeling results.A new dataset was constructed for tongue image segmentation.Tongue color was marked to build a classified dataset for network training.In this research,the Inception+Atrous Spatial Pyramid Pooling(ASPP)+UNet(IAUNet)method was proposed for tongue image segmentation,based on the existing UNet,Inception,and atrous convolution.Moreover,the Tongue Color Classification Net(TCCNet)was constructed with reference to ResNet,Inception,and Triple-Loss.Several important measurement indexes were selected to evaluate and compare the effects of the novel and existing methods for tongue segmentation and tongue color classification.IAUNet was compared with existing mainstream methods such as UNet and DeepLabV3+for tongue segmentation.TCCNet for tongue color classification was compared with VGG16 and GoogLeNet.Results IAUNet can accurately segment the tongue from original images.The results showed that the Mean Intersection over Union(MIoU)of IAUNet reached 96.30%,and its Mean Pixel Accuracy(MPA),mean Average Precision(mAP),F1-Score,G-Score,and Area Under Curve(AUC)reached 97.86%,99.18%,96.71%,96.82%,and 99.71%,respectively,suggesting IAUNet produced better segmentation than other methods,with fewer parameters.Triplet-Loss was applied in the proposed TCCNet to separate different embedded colors.The experiment yielded ideal results,with F1-Score and mAP of the TCCNet reached 88.86% and 93.49%,respectively.Conclusion IAUNet based on deep learning for tongue segmentation is better than traditional ones.IAUNet can not only produce ideal tongue segmentation,but have better effects than those of PSPNet,SegNet,UNet,and DeepLabV3+,the traditional networks.As for tongue color classification,the proposed network,TCCNet,had better F1-Score and mAP values as compared with other neural networks such as VGG16 and GoogLeNet. 展开更多
关键词 Tongue image analysis Tongue image segmentation Tongue color classification Deep learning Convolutional neural network Snake model Atrous convolution
下载PDF
Object detection of artifact threaded hole based on Faster R-CNN 被引量:2
11
作者 ZHANG Zhengkai QI Lang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第1期107-114,共8页
In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based ... In order to improve the accuracy of threaded hole object detection,combining a dual camera vision system with the Hough transform circle detection,we propose an object detection method of artifact threaded hole based on Faster region-ased convolutional neural network(Faster R-CNN).First,a dual camera image acquisition system is established.One industrial camera placed at a high position is responsible for collecting the whole image of the workpiece,and the suspected screw hole position on the workpiece can be preliminarily selected by Hough transform detection algorithm.Then,the other industrial camera is responsible for collecting the local images of the suspected screw holes that have been detected by Hough transform one by one.After that,ResNet50-based Faster R-CNN object detection model is trained on the self-built screw hole data set.Finally,the local image of the threaded hole is input into the trained Faster R-CNN object detection model for further identification and location.The experimental results show that the proposed method can effectively avoid small object detection of threaded holes,and compared with the method that only uses Hough transform or Faster RCNN object detection alone,it has high recognition and positioning accuracy. 展开更多
关键词 object detection threaded hole deep learning region-based convolutional neural network(Faster R-CNN) Hough transform
下载PDF
Arrival Pattern Recognition and Prediction Based on Machine Learning
12
作者 GUI Xuhao ZHANG Junfeng +1 位作者 TANG Xinmin KANG Bo 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第6期927-936,共10页
A data-driven method for arrival pattern recognition and prediction is proposed to provide air traffic controllers(ATCOs)with decision support. For arrival pattern recognition,a clustering-based method is proposed to ... A data-driven method for arrival pattern recognition and prediction is proposed to provide air traffic controllers(ATCOs)with decision support. For arrival pattern recognition,a clustering-based method is proposed to cluster arrival patterns by control intentions. For arrival pattern prediction,two predictors are trained to estimate the most possible command issued by the ATCOs in a particular traffic situation. Training the arrival pattern predictor could be regarded as building an ATCOs simulator. The simulator can assign an appropriate arrival pattern for each arrival aircraft,just like real ATCOs do. Therefore,the simulator is considered to be able to provide effective advice for part of the work of ATCOs. Finally,a case study is carried out and demonstrates that the convolutional neural network(CNN)-based predictor performs better than the radom forest(RF)-based one. 展开更多
关键词 air traffic management decision support arrival scheduling deep learning convolutional neural networks
下载PDF
External and Internal Validation of a Computer Assisted Diagnostic Model for Detecting Multi-Organ Mass Lesions in CT images 被引量:1
13
作者 Lianyan Xu Ke Yan +4 位作者 Le Lu Weihong Zhang Xu Chen Xiaofei Huo Jingjing Lu 《Chinese Medical Sciences Journal》 CAS CSCD 2021年第3期210-217,共8页
Objective We developed a universal lesion detector(ULDor)which showed good performance in in-lab experiments.The study aims to evaluate the performance and its ability to generalize in clinical setting via both extern... Objective We developed a universal lesion detector(ULDor)which showed good performance in in-lab experiments.The study aims to evaluate the performance and its ability to generalize in clinical setting via both external and internal validation.Methods The ULDor system consists of a convolutional neural network(CNN)trained on around 80 K lesion annotations from about 12 K CT studies in the DeepLesion dataset and 5 other public organ-specific datasets.During the validation process,the test sets include two parts:the external validation dataset which was comprised of 164 sets of non-contrasted chest and upper abdomen CT scans from a comprehensive hospital,and the internal validation dataset which was comprised of 187 sets of low-dose helical CT scans from the National Lung Screening Trial(NLST).We ran the model on the two test sets to output lesion detection.Three board-certified radiologists read the CT scans and verified the detection results of ULDor.We used positive predictive value(PPV)and sensitivity to evaluate the performance of the model in detecting space-occupying lesions at all extra-pulmonary organs visualized on CT images,including liver,kidney,pancreas,adrenal,spleen,esophagus,thyroid,lymph nodes,body wall,thoracic spine,etc.Results In the external validation,the lesion-level PPV and sensitivity of the model were 57.9%and 67.0%,respectively.On average,the model detected 2.1 findings per set,and among them,0.9 were false positives.ULDor worked well for detecting liver lesions,with a PPV of 78.9%and a sensitivity of 92.7%,followed by kidney,with a PPV of 70.0%and a sensitivity of 58.3%.In internal validation with NLST test set,ULDor obtained a PPV of 75.3%and a sensitivity of 52.0%despite the relatively high noise level of soft tissue on images.Conclusions The performance tests of ULDor with the external real-world data have shown its high effectiveness in multiple-purposed detection for lesions in certain organs.With further optimisation and iterative upgrades,ULDor may be well suited for extensive application to external data. 展开更多
关键词 lesion detection computer-aided diagnosis convolutional neural network deep learning
下载PDF
一种灵活的多算法集成软件缺陷检测平台
14
作者 马一帆 林俊宇 +1 位作者 李宝明 徐培全 《智能计算机与应用》 2020年第9期159-162,共4页
本文针对工业生产中产品缺陷检测的问题,利用WPF在VS2015的开发环境下设计出缺陷检测软件体系平台。利用C#和Halcon开发了3种缺陷检测模块算法,即阈值分割模块,形状模板匹配模块和卷积神经网络深度学习模块。对比分析并研究了3种缺陷检... 本文针对工业生产中产品缺陷检测的问题,利用WPF在VS2015的开发环境下设计出缺陷检测软件体系平台。利用C#和Halcon开发了3种缺陷检测模块算法,即阈值分割模块,形状模板匹配模块和卷积神经网络深度学习模块。对比分析并研究了3种缺陷检测算法的原理,应用范围,优缺点,并对已开发模块进行功能验证,展望了未来的研究方向。 展开更多
关键词 缺陷检测 阈值分割 模板匹配 卷积神经网络深度学习
下载PDF
基于连续化制备的核壳结构压感纤维阵列式精准轮廓识别垫
15
作者 欧阳静宇 欧阳举 +7 位作者 胡佳雨 刘晓娟 李攀 杨麦萍 王佳希 侯冲 张其冲 陶光明 《中国科学:技术科学》 EI CSCD 北大核心 2024年第4期665-677,共13页
记录和理解外界压力刺激对于人与周围环境交互的研究和智能机器人的开发具有重要意义.现有的压力传感设备多为刚性结构难以自然贴附于物体表面,且低密度传感单元使得物体压力特征信息的获取受到限制,一种可适形、全覆盖、高密度的压力... 记录和理解外界压力刺激对于人与周围环境交互的研究和智能机器人的开发具有重要意义.现有的压力传感设备多为刚性结构难以自然贴附于物体表面,且低密度传感单元使得物体压力特征信息的获取受到限制,一种可适形、全覆盖、高密度的压力传感与分析系统亟待研究.本文采用湿法纺丝工艺连续化制备了芯层为混纺导电芯材,包层为碳纳米管掺杂的聚氨酯的核壳结构压感纤维,通过缝纫、刺绣方式在织物表面构筑经纬结构的交叉点压力传感阵列.结合阵列数据采集实时捕获压力图谱帧,基于深度学习卷积神经网络驱动的算法模型,实现了物体轮廓识别垫对环境物体的轮廓精准分类识别.该识别系统准确率高达99.4%,证明了其在提取物体的压力信息和揭示物体的形态特征的应用潜能. 展开更多
关键词 压感纤维 传感织物 阵列数据采集 深度学习卷积神经网络
原文传递
Classification of hyperspectral images based on a convolutional neural network and spectral sensitivity 被引量:3
16
作者 Cheng-ming YE Xin LIU +3 位作者 Hong XU Shi-cong REN Yao LI Jonathan LI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第3期240-248,共9页
In recent years,deep learning methods have gradually come to be used in hyperspectral imaging domains.Because of the peculiarity of hyperspectral imaging,a mass of information is contained in the spectral dimensions o... In recent years,deep learning methods have gradually come to be used in hyperspectral imaging domains.Because of the peculiarity of hyperspectral imaging,a mass of information is contained in the spectral dimensions of hyperspectral images.Also,different ob jects on a land surface are sensitive to different ranges of wavelength.To achieve higher accuracy in classification,we propose a structure that combines spectral sensitivity with a convolutional neural network by adding spectral weights derived from predicted outcomes before the final classification layer.First,samples are divided into visible light and infrared,with a portion of the samples fed into networks during training.Then,two key parameters,unrecognized rate(δ)and wrongly recognized rate(γ),are calculated from the predicted outcome of the whole scene.Next,the spectral weight,derived from these two parameters,is calculated.Finally,the spectral weight is added and an improved structure is constructed.The improved structure not only combines the features in spatial and spectral dimensions,but also gives spectral sensitivity a primary status.Compared with inputs from the whole spectrum,the improved structure attains a nearly 2%higher prediction accuracy.When applied to public data sets,compared with the whole spectrum,on the average we achieve approximately 1%higher accuracy. 展开更多
关键词 Hyperspectral imaging Deep learning Convolutional neural network(CNN) Spectral sensitivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部