期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
深度学习图像分类技术在石油管材显微组织分析中的应用
1
作者
刘青
樊治海
+4 位作者
仝珂
白小亮
李东风
韩永明
侯强
《石油管材与仪器》
2023年第1期54-60,共7页
探索了深度学习图像分类技术在油套管和输送管材料显微组织分析中的应用可行性。首先,基于实验室数据收集了油套管、输送管和环焊缝等材料的常见显微组织照片,形成了包含8类典型组织类型的图像分类数据集;随后,选择VGG和残差网络(ResNet...
探索了深度学习图像分类技术在油套管和输送管材料显微组织分析中的应用可行性。首先,基于实验室数据收集了油套管、输送管和环焊缝等材料的常见显微组织照片,形成了包含8类典型组织类型的图像分类数据集;随后,选择VGG和残差网络(ResNet)这两种被广泛应用的卷积神经网络(CNN)架构进行研究。在搭建的数据集上对两个模型进行了训练并测试了它们对显微组织的分类能力;最后,研究了不同训练参数和样本容量下两个模型识别性能的变化规律。研究结果表明,VGG和残差网络在显微组织测试数据集上的识别准确率分别为90%和86%;VGG模型在较小数据集上的组织分类性能优于残差网络;二者对贝氏体、铁素体+珠光体和回火索氏体三类组织具有较高的准确率。
展开更多
关键词
显微组织分析
深度学习图像分类
卷积神经网络
VGG
ResNet
下载PDF
职称材料
题名
深度学习图像分类技术在石油管材显微组织分析中的应用
1
作者
刘青
樊治海
仝珂
白小亮
李东风
韩永明
侯强
机构
中国石油集团工程材料研究院有限公司
天津钢管制造有限公司
出处
《石油管材与仪器》
2023年第1期54-60,共7页
文摘
探索了深度学习图像分类技术在油套管和输送管材料显微组织分析中的应用可行性。首先,基于实验室数据收集了油套管、输送管和环焊缝等材料的常见显微组织照片,形成了包含8类典型组织类型的图像分类数据集;随后,选择VGG和残差网络(ResNet)这两种被广泛应用的卷积神经网络(CNN)架构进行研究。在搭建的数据集上对两个模型进行了训练并测试了它们对显微组织的分类能力;最后,研究了不同训练参数和样本容量下两个模型识别性能的变化规律。研究结果表明,VGG和残差网络在显微组织测试数据集上的识别准确率分别为90%和86%;VGG模型在较小数据集上的组织分类性能优于残差网络;二者对贝氏体、铁素体+珠光体和回火索氏体三类组织具有较高的准确率。
关键词
显微组织分析
深度学习图像分类
卷积神经网络
VGG
ResNet
Keywords
metallographic analysis
deep learning image classification
convolutional neural networks
VGG
ResNet
分类号
TP242 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
深度学习图像分类技术在石油管材显微组织分析中的应用
刘青
樊治海
仝珂
白小亮
李东风
韩永明
侯强
《石油管材与仪器》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部