期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
中职学校构建“深度学习型”课堂教学策略初探
1
作者 李佳 修振腾 《女报》 2023年第1期172-174,共3页
本文旨在探讨中职学校如何构建“深度学习型”课堂教学。在当前教育改革的背景下,深度学习被认为是提高学生学习效果和培养创新能力的关键。深度学习型课堂教学策略主要包括以下几个方面:首先,教师需要以学生为中心,关注学生的需求和兴... 本文旨在探讨中职学校如何构建“深度学习型”课堂教学。在当前教育改革的背景下,深度学习被认为是提高学生学习效果和培养创新能力的关键。深度学习型课堂教学策略主要包括以下几个方面:首先,教师需要以学生为中心,关注学生的需求和兴趣,激发学生的学习动力;其次,强调课堂互动,鼓励学生积极参与课堂讨论,提高学生的思维能力和沟通能力;再次,采用多样化的教学方法,如案例分析、小组讨论、项目制等,使学生在实践中深入理解知识;最后,强化课程与职业技能的结合,帮助学生提高职业素养和技能应用能力。 展开更多
关键词 中职学校 深度学习型 课堂教学
下载PDF
Advancing automated pupillometry:a practical deep learning model utilizing infrared pupil images
2
作者 Dai Guangzheng Yu Sile +2 位作者 Liu Ziming Yan Hairu He Xingru 《国际眼科杂志》 CAS 2024年第10期1522-1528,共7页
AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hos... AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application. 展开更多
关键词 PUPIL infrared image algorithm deep learning model
下载PDF
数字垄断协议的反垄断法甄别及其规制 被引量:6
3
作者 孙晋 蓝澜 《科技与法律(中英文)》 CSSCI 2023年第1期1-10,共10页
数字平台借由算法实施的垄断协议可以被称之为数字垄断协议。算法除了发挥“信使”作用成为传递竞争信息的辅助工具以达成“算法辅助型”数字垄断协议,深度学习算法还可能代替经营者达成“深度学习型”数字垄断协议。算法在充当“信使... 数字平台借由算法实施的垄断协议可以被称之为数字垄断协议。算法除了发挥“信使”作用成为传递竞争信息的辅助工具以达成“算法辅助型”数字垄断协议,深度学习算法还可能代替经营者达成“深度学习型”数字垄断协议。算法在充当“信使”角色时,仍然能被认定为我国《反垄断法》既有框架中的横向垄断协议,仅在“意思联络或者信息交流”这一垄断协议构成要件的证明上面临技术障碍,需要引入技术专家及信息技术进行监测。算法在起到“中心”作用时,应当结合《反垄断法》对数字时代的回应及《禁止垄断协议规定(征求意见稿)》配套修订的契机,细化帮助达成垄断协议者的规制规则,并弱化“意思联络”这一垄断协议构成要件。对于“深度学习型”数字垄断协议,则需要通过对相关规定进行再造以拓宽反垄断法默示共谋理论的适用空间。 展开更多
关键词 数字经济 算法辅助型垄断协议 深度学习型垄断协议 反垄断法规制
下载PDF
The enlightenment of artificial intelligence large-scale model on the research of intelligent eye diagnosis in traditional Chinese medicine
4
作者 GAO Yuan WU Zixuan +4 位作者 SHENG Boyang ZHANG Fu CHENG Yong YAN Junfeng PENG Qinghua 《Digital Chinese Medicine》 CAS CSCD 2024年第2期101-107,共7页
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ... Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications. 展开更多
关键词 Traditional Chinese medicine(TCM) Eye diagnosis Artificial intelligence(AI) Large-scale model Self-supervised learning Deep neural network
下载PDF
Anomaly detection of earthquake precursor data using long short-term memory networks 被引量:7
5
作者 Cai Yin Mei-Ling Shyu +2 位作者 Tu Yue-Xuan Teng Yun-Tian Hu Xing-Xing 《Applied Geophysics》 SCIE CSCD 2019年第3期257-266,394,共11页
Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predic... Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predictive model for normal data.Furthermore,the prediction errors from the predictive models are used to indicate normal or abnormal behavior.An additional advantage of using the LSTM networks is that the earthquake precursor data can be directly fed into the network without any elaborate preprocessing as required by other approaches.Furthermore,no prior information on abnormal data is needed by these networks as they are trained only using normal data.Experiments using three groups of real data were conducted to compare the anomaly detection results of the proposed method with those of manual recognition.The comparison results indicated that the proposed LSTM network achieves promising results and is viable for detecting anomalies in earthquake precursor data. 展开更多
关键词 Earthquake precursor data deep learning LSTM-RNN prediction model anomaly detect io n
下载PDF
Sparsity-Assisted Intelligent Condition Monitoring Method for Aero-engine Main Shaft Bearing 被引量:4
6
作者 DING Baoqing WU Jingyao +3 位作者 SUN Chuang WANG Shibin CHEN Xuefeng LI Yinghong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期508-516,共9页
Weak feature extraction is of great importance for condition monitoring and intelligent diagnosis of aeroengine.Aimed at achieving intelligent diagnosis of aero-engine main shaft bearing,an enhanced sparsity-assisted ... Weak feature extraction is of great importance for condition monitoring and intelligent diagnosis of aeroengine.Aimed at achieving intelligent diagnosis of aero-engine main shaft bearing,an enhanced sparsity-assisted intelligent condition monitoring method is proposed in this paper.Through analyzing the weakness of convex sparse model,i.e.the tradeoff between noise reduction and feature reconstruction,this paper proposes an enhanced-sparsity nonconvex regularized convex model based on Moreau envelope to achieve weak feature extraction.Accordingly,a sparsity-assisted deep convolutional variational autoencoders network is proposed,which achieves the intelligent identification of fault state through training denoised normal data.Finally,the effectiveness of the proposed method is verified through aero-engine bearing run-to-failure experiment.The comparison results show that the proposed method is good at abnormal pattern recognition,showing a good potential for weak fault intelligent diagnosis of aero-engine main shaft bearings. 展开更多
关键词 aero-engine main shaft bearing intelligent condition monitoring feature extraction sparse model variational autoencoders deep learning
下载PDF
Tongue image segmentation and tongue color classification based on deep learning 被引量:4
7
作者 LIU Wei CHEN Jinming +3 位作者 LIU Bo HU Wei WU Xingjin ZHOU Hui 《Digital Chinese Medicine》 2022年第3期253-263,共11页
Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe... Objective To propose two novel methods based on deep learning for computer-aided tongue diagnosis,including tongue image segmentation and tongue color classification,improving their diagnostic accuracy.Methods LabelMe was used to label the tongue mask and Snake model to optimize the labeling results.A new dataset was constructed for tongue image segmentation.Tongue color was marked to build a classified dataset for network training.In this research,the Inception+Atrous Spatial Pyramid Pooling(ASPP)+UNet(IAUNet)method was proposed for tongue image segmentation,based on the existing UNet,Inception,and atrous convolution.Moreover,the Tongue Color Classification Net(TCCNet)was constructed with reference to ResNet,Inception,and Triple-Loss.Several important measurement indexes were selected to evaluate and compare the effects of the novel and existing methods for tongue segmentation and tongue color classification.IAUNet was compared with existing mainstream methods such as UNet and DeepLabV3+for tongue segmentation.TCCNet for tongue color classification was compared with VGG16 and GoogLeNet.Results IAUNet can accurately segment the tongue from original images.The results showed that the Mean Intersection over Union(MIoU)of IAUNet reached 96.30%,and its Mean Pixel Accuracy(MPA),mean Average Precision(mAP),F1-Score,G-Score,and Area Under Curve(AUC)reached 97.86%,99.18%,96.71%,96.82%,and 99.71%,respectively,suggesting IAUNet produced better segmentation than other methods,with fewer parameters.Triplet-Loss was applied in the proposed TCCNet to separate different embedded colors.The experiment yielded ideal results,with F1-Score and mAP of the TCCNet reached 88.86% and 93.49%,respectively.Conclusion IAUNet based on deep learning for tongue segmentation is better than traditional ones.IAUNet can not only produce ideal tongue segmentation,but have better effects than those of PSPNet,SegNet,UNet,and DeepLabV3+,the traditional networks.As for tongue color classification,the proposed network,TCCNet,had better F1-Score and mAP values as compared with other neural networks such as VGG16 and GoogLeNet. 展开更多
关键词 Tongue image analysis Tongue image segmentation Tongue color classification Deep learning Convolutional neural network Snake model Atrous convolution
下载PDF
An Intelligent Learning Algorithm for Improving BIM Object Classification and Recognition
8
作者 WANG Ru BENMANSOUR Oussama XING Ying 《施工技术(中英文)》 CAS 2024年第20期86-93,共8页
Building information modeling(BIM)object classification takes a lot of time and energy.Misclassification or omission of any object may lead to the emergence of abnormal results,which have a great impact on the project... Building information modeling(BIM)object classification takes a lot of time and energy.Misclassification or omission of any object may lead to the emergence of abnormal results,which have a great impact on the project workflow and results.Roundly understanding BIM object classification,by improving Swin Transformer classifier algorithm parameters,using the model primitives extracted from IFC format BIM model file,deep learning of 7 types of BIM object categories is taken.Through the performance and evaluation indicators obtained in training,the results improve the classification accuracy. 展开更多
关键词 building information modeling(BIM) object classification deep learning model primitive performance
下载PDF
Construction and optimization of traditional Chinese medicine constitution prediction models based on deep learning
9
作者 ZHANG Xinge XU Qiang +1 位作者 WEN Chuanbiao LUO Yue 《Digital Chinese Medicine》 CAS 2024年第3期241-255,共15页
Objective To cater to the demands for personalized health services from a deep learning per-spective by investigating the characteristics of traditional Chinese medicine(TCM)constitu-tion data and constructing models ... Objective To cater to the demands for personalized health services from a deep learning per-spective by investigating the characteristics of traditional Chinese medicine(TCM)constitu-tion data and constructing models to explore new prediction methods.Methods Data from students at Chengdu University of Traditional Chinese Medicine were collected and organized according to the 24 solar terms from January 21,2020,to April 6,2022.The data were used to identify nine TCM constitutions,including balanced constitution,Qi deficiency constitution,Yang deficiency constitution,Yin deficiency constitution,phlegm dampness constitution,damp heat constitution,stagnant blood constitution,Qi stagnation constitution,and specific-inherited predisposition constitution.Deep learning algorithms were employed to construct multi-layer perceptron(MLP),long short-term memory(LSTM),and deep belief network(DBN)models for the prediction of TCM constitutions based on the nine constitution types.To optimize these TCM constitution prediction models,this study in-troduced the attention mechanism(AM),grey wolf optimizer(GWO),and particle swarm op-timization(PSO).The models’performance was evaluated before and after optimization us-ing the F1-score,accuracy,precision,and recall.Results The research analyzed a total of 31655 pieces of data.(i)Before optimization,the MLP model achieved more than 90%prediction accuracy for all constitution types except the balanced and Qi deficiency constitutions.The LSTM model's prediction accuracies exceeded 60%,indicating that their potential in TCM constitutional prediction may not have been fully realized due to the absence of pronounced temporal features in the data.Regarding the DBN model,the binary classification analysis showed that,apart from slightly underperforming in predicting the Qi deficiency constitution and damp heat constitution,with accuracies of 65%and 60%,respectively.The DBN model demonstrated considerable discriminative power for other constitution types,achieving prediction accuracy rates and area under the receiver op-erating characteristic(ROC)curve(AUC)values exceeding 70%and 0.78,respectively.This indicates that while the model possesses a certain level of constitutional differentiation abili-ty,it encounters limitations in processing specific constitutional features,leaving room for further improvement in its performance.For multi-class classification problem,the DBN model’s prediction accuracy rate fell short of 50%.(ii)After optimization,the LSTM model,enhanced with the AM,typically achieved a prediction accuracy rate above 75%,with lower performance for the Qi deficiency constitution,stagnant blood constitution,and Qi stagna-tion constitution.The GWO-optimized DBN model for multi-class classification showed an increased prediction accuracy rate of 56%,while the PSO-optimized model had a decreased accuracy rate to 37%.The GWO-PSO-DBN model,optimized with both algorithms,demon-strated an improved prediction accuracy rate of 54%.Conclusion This study constructed MLP,LSTM,and DBN models for predicting TCM consti-tution and improved them based on different optimisation algorithms.The results showed that the MLP model performs well,the LSTM and DBN models were effective in prediction but with certain limitations.This study also provided a new technology reference for the es-tablishment and optimisation strategies of TCM constitution prediction models,and a novel idea for the treatment of non-disease. 展开更多
关键词 Traditional Chinese medicine(TCM) constitution Deep learning Constitution classification Prediction model Optimization research
下载PDF
Designing natural product-like virtual libraries using deep molecule generative models 被引量:1
10
作者 Yibo Li Xin Zhou +1 位作者 Zhenming Liu Liangren Zhang 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2018年第7期451-459,共9页
Natural products(NPs) have long been recognized as a valuable resource for drug discovery, and bringing NP-related features to virtual libraries is believed to be an effective way to increase the coverage of druggab... Natural products(NPs) have long been recognized as a valuable resource for drug discovery, and bringing NP-related features to virtual libraries is believed to be an effective way to increase the coverage of druggable chemical space. Here, deep learning-based molecule generative model, which is a recent technique in de novo molecule design, was applied to generate virtual libraries with NP-like properties. Results demonstrated that the model was effective in generating molecules that highly resemble NPs. Moreover, the model was also found to be capable of generating NP-like molecules that were also easy to synthesize, significantly increasing the practical value of the compound library. 展开更多
关键词 Natural product Deep learning Generative model Virtual library design
原文传递
Tandem hidden Markov models using deep belief networks for offline handwriting recognition 被引量:2
11
作者 Partha Pratim ROY Guoqiang ZHONG Mohamed CHERIET 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第7期978-988,共11页
Unconstrained offiine handwriting recognition is a challenging task in the areas of document analysis and pattern recognition. In recent years, to sufficiently exploit the supervisory information hidden in document im... Unconstrained offiine handwriting recognition is a challenging task in the areas of document analysis and pattern recognition. In recent years, to sufficiently exploit the supervisory information hidden in document images, much effort has been made to integrate multi-layer perceptrons (MLPs) in either a hybrid or a tandem fashion into hidden Markov models (HMMs). However, due to the weak learnability of MLPs, the learnt features are not necessarily optimal for subsequent recognition tasks. In this paper, we propose a deep architecture-based tandem approach for unconstrained offiine handwriting recognition. In the proposed model, deep belief networks arc adopted to learn the compact representations of sequential data, while HMMs are applied for (sub-)word recognition. We evaluate the proposed model on two publicly available datasets, i.e., RIMES and IFN/ENIT, which are based on Latin and Arabic languages respectively, and one dataset collected by ourselves called Devanagari (all Indian script). Extensive experiments show the advantage of the proposed model, especially over the MLP-HMMs taudem approaches. 展开更多
关键词 Handwriting recognition Hidden Markov models Deep learning Deep belief networks Tandemapproach
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部