-
题名使用深度对抗子空间聚类实现高光谱波段选择
被引量:3
- 1
-
-
作者
曾梦
宁彬
蔡之华
谷琼
-
机构
湖北文理学院计算机工程学院
中国地质大学(武汉)计算机学院
-
出处
《计算机应用》
CSCD
北大核心
2020年第2期381-385,共5页
-
基金
教育部科技发展中心高校产学研创新基金——新一代信息技术创新项目(2018A02028)
国家自然科学基金资助项目(61773355,61603355)
+2 种基金
中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目(G1323541717)
湖北省自然科学基金资助项目(2018CFB528)
智能地学信息处理湖北省重点实验室开放研究项目(KLIGIP-2017B01)~~
-
文摘
高光谱图像(HSI)由数百个波段组成,波段之间的相关性强且具有较高的冗余度,导致出现维度灾难并且分类的复杂性很高。为此,使用深度对抗子空间聚类(DASC)网络进行高光谱的波段选择,并引入拉普拉斯正则化使网络更优,在保证分类精度的前提下降低分类的复杂度。该网络通过在编码器和解码器中引入自表达层来模仿传统子空间聚类的"自表达"属性,充分运用光谱信息和非线性特征转换得到波段之间的相互关系,解决传统波段选择方法无法同时考虑光谱和空间信息的问题。同时,引入对抗学习来监督自编码器的样本表示和子空间聚类,使得子空间聚类具有更好的自表达性能。为了使网络性能更优,加入拉普拉斯正则化来考虑反映图像几何信息的局部流形结构。实验在两个公开的高光谱数据集上进行,所提出的方法和几种主流的波段选择方法进行对比的结果表明,DASC方法在分类精度上优于对比方法,其选出的波段子集可以满足应用需求。
-
关键词
高光谱图像
波段选择
深度对抗子空间聚类
拉普拉斯正则化
深度学习
-
Keywords
HyperSpectral Image(HSI)
band selection
Deep Adversarial Subspace Clustering(DASC)
Laplacian regularization
deep learning
-
分类号
TP751
[自动化与计算机技术—检测技术与自动化装置]
-