在新一代高效三维视频编码标准(High Efficiency Video Coding for 3D,3D-HEVC)中,为了更加精确地表示深度图中的物体边界,利用非矩形块分割的深度建模模式(Depth modelling modes,DMMs)预测编码方法被引入,现有的DMMs模式包括锲形(Wedg...在新一代高效三维视频编码标准(High Efficiency Video Coding for 3D,3D-HEVC)中,为了更加精确地表示深度图中的物体边界,利用非矩形块分割的深度建模模式(Depth modelling modes,DMMs)预测编码方法被引入,现有的DMMs模式包括锲形(Wedgelet)分割和轮廓(Contour)分割2种模式,其主要区别在于推导分割的方式不同。Contour分割利用已编码纹理块信息进行深度分区推导,然而这种分割方法仅仅利用了纹理与深度之间的结构相关性,而忽略了边界相邻块之间具有的边缘相似性,这潜在导致推导块分割不准确,进而影响编码效率。针对Contour分割模式导致的分割不准确问题,结合深度边界块之间的边缘相似信息,提出了一种增强的Contour分割方法。实验结果表明,与3D-HEVC的参考软件HTM11.0相比,在全帧内(AllIntra,AI)编码测试条件下,对于合成视点平均有近0.1%的BD-Rate节省。展开更多
According to the characteristics of spiral mining head for deep seabed cobalt-rich crust, the kinematic model, cutting loads model, quantity of cutting picks model of mining head, granularity distribution model and en...According to the characteristics of spiral mining head for deep seabed cobalt-rich crust, the kinematic model, cutting loads model, quantity of cutting picks model of mining head, granularity distribution model and energy consumption model were constructed. Based on these models, computer simulation program of cutting loads was developed with VB software. The mechanical parameters of mining head were obtained in the cutting depth range of 5160 mm. Making use of the simulation results, the effect of cutting depth of spiral mining head on the mining process was studied. The results show that the maximum force of single pick is 4.7051kN, the maximum force and torque of spiral drum of mining head are respectively 34.1668kN and 3.8795kN·m at the cutting depth of 160mm.展开更多
Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its tes...Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its testing principle of the wear depth of the spherical plain bearing was introduced.Meanwhile,the error factors affecting the wear-depth detecting precision were analyzed.Then,the comprehensive error model of the wear-depth detecting system of the spherical plain bearing was built by the multi-body system theory(MBS).In addition,the thermal deformation of the wear-depth detecting system caused by varying the environmental temperature was detected.Finally,according to the above experimental parameters,the thermal errors of the related parts of the comprehensive error model were calculated by FEM.The results show that the difference between the simulation value and the experimental value is less than 0.005 mm,and the two values are close.The correctness of the comprehensive error model is verified under the thermal error experimental conditions.展开更多
文摘在新一代高效三维视频编码标准(High Efficiency Video Coding for 3D,3D-HEVC)中,为了更加精确地表示深度图中的物体边界,利用非矩形块分割的深度建模模式(Depth modelling modes,DMMs)预测编码方法被引入,现有的DMMs模式包括锲形(Wedgelet)分割和轮廓(Contour)分割2种模式,其主要区别在于推导分割的方式不同。Contour分割利用已编码纹理块信息进行深度分区推导,然而这种分割方法仅仅利用了纹理与深度之间的结构相关性,而忽略了边界相邻块之间具有的边缘相似性,这潜在导致推导块分割不准确,进而影响编码效率。针对Contour分割模式导致的分割不准确问题,结合深度边界块之间的边缘相似信息,提出了一种增强的Contour分割方法。实验结果表明,与3D-HEVC的参考软件HTM11.0相比,在全帧内(AllIntra,AI)编码测试条件下,对于合成视点平均有近0.1%的BD-Rate节省。
基金Project(DY105 03 02 1) supported by the Deep Ocean Technology Development Itemproject(50474052) supportedby the National Natural Science Foundation of China
文摘According to the characteristics of spiral mining head for deep seabed cobalt-rich crust, the kinematic model, cutting loads model, quantity of cutting picks model of mining head, granularity distribution model and energy consumption model were constructed. Based on these models, computer simulation program of cutting loads was developed with VB software. The mechanical parameters of mining head were obtained in the cutting depth range of 5160 mm. Making use of the simulation results, the effect of cutting depth of spiral mining head on the mining process was studied. The results show that the maximum force of single pick is 4.7051kN, the maximum force and torque of spiral drum of mining head are respectively 34.1668kN and 3.8795kN·m at the cutting depth of 160mm.
基金Project(2014E00468R)supported by Technological Innovation Fund of Aviation Industry Corporation of China
文摘Because of various error factors,the detecting errors in the real-time experimental data of the wear depth affect the accuracy of the detecting data.The self-made spherical plain bearing tester was studied,and its testing principle of the wear depth of the spherical plain bearing was introduced.Meanwhile,the error factors affecting the wear-depth detecting precision were analyzed.Then,the comprehensive error model of the wear-depth detecting system of the spherical plain bearing was built by the multi-body system theory(MBS).In addition,the thermal deformation of the wear-depth detecting system caused by varying the environmental temperature was detected.Finally,according to the above experimental parameters,the thermal errors of the related parts of the comprehensive error model were calculated by FEM.The results show that the difference between the simulation value and the experimental value is less than 0.005 mm,and the two values are close.The correctness of the comprehensive error model is verified under the thermal error experimental conditions.