Anomalous trajectory detection and traffic flow classification for complicated airspace are of vital importance to safety and efficiency analysis.Some researchers employed density-based unsupervised machine learning m...Anomalous trajectory detection and traffic flow classification for complicated airspace are of vital importance to safety and efficiency analysis.Some researchers employed density-based unsupervised machine learning method to exploit these trajectories related to air traffic control(ATC)actions.However,the quality of position data and the tiny density difference between traffic flows in the terminal area make it particularly challenging.To alleviate these two challenges,this paper proposes a novel framework which combines robust deep auto-encoder(RDAE)model and density peak(DP)clustering algorithm.Specifically,the RDAE model is utilized to reconstruct denoising trajectory and identify anomaly trajectories in the terminal area by two different regularizations.Then,the nonlinear components captured by the encoder of RDAE are input in the DP algorithm to classify the global traffic flows.An experiment on a terminal airspace at Guangzhou Baiyun Airport(ZGGG)with anomaly label shows that the proposed combination can automatically capture non-conventional spatiotemporal traffic patterns in the aircraft movement.The superiority of RDAE and combination are also demonstrated by visualizing and quantitatively evaluating the experimental results.展开更多
Interannual variations in the surface and subsurface tropical Indian Ocean were studied using HadlSST and SODA datasets. Wind and heat flux datasets were used to discuss the mechanisms for these variations. Our result...Interannual variations in the surface and subsurface tropical Indian Ocean were studied using HadlSST and SODA datasets. Wind and heat flux datasets were used to discuss the mechanisms for these variations. Our results indicate that the surface and subsurface variations of the tropical Indian Ocean during Indian Ocean Dipole (IOD) events are significantly different. A prominent characteristic of the eastern pole is the SSTA rebound after a cooling process, which does not take place at the subsurface layer. In the western pole, the surface anomalies last longer than the subsurface anomalies. The subsurface anomalies are strongly correlated with ENSO, while the relationship between the surface anomalies and ENSO is much weaker. And the subsurface anomalies of the two poles are negatively correlated while they are positively correlated at the surface layer. The wind and surface heat flux analysis suggests that the thermocline depth variations are mainly determined by wind stress fields, while the heat flux effect is important on SST.展开更多
Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predic...Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predictive model for normal data.Furthermore,the prediction errors from the predictive models are used to indicate normal or abnormal behavior.An additional advantage of using the LSTM networks is that the earthquake precursor data can be directly fed into the network without any elaborate preprocessing as required by other approaches.Furthermore,no prior information on abnormal data is needed by these networks as they are trained only using normal data.Experiments using three groups of real data were conducted to compare the anomaly detection results of the proposed method with those of manual recognition.The comparison results indicated that the proposed LSTM network achieves promising results and is viable for detecting anomalies in earthquake precursor data.展开更多
The forward calculation of gravity anomalies is a non-negligible aspect contributing to the time consumption of the entire process of basement relief estimation.In this study,we develop a fast hybrid computing scheme ...The forward calculation of gravity anomalies is a non-negligible aspect contributing to the time consumption of the entire process of basement relief estimation.In this study,we develop a fast hybrid computing scheme to compute the gravity anomaly of a basement.We use the vertical prism source equation in a given region R centered at a certain gravity observation point and the vertical line source equation outside R to derive the gravity anomaly.We observe that the computation with the vertical line source equation is much faster than that of the vertical prism source equation,but the former is slightly inaccurate.Therefore,our method is highly effi cient and able to avoid the errors caused by the low accuracy of the vertical line source equation near the observation point.We then derive the general principle of choosing the size of R via a series of prism model tests.Our tests on the gravity anomaly over the Los Angeles Basin confirm the correctness of our proposed forward strategy.We modify Bott’s method with an accelerating factor to expedite the inversion procedure and presume that the density contrast between the sediments and the basement in a sedimentary basin varies laterally and can be obtained using the equivalent equation.Synthetic data and real data applications in the Weihe Basin illustrate that our proposed method can accurately and effi ciently estimate the basement relief of sedimentary basins.展开更多
The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity i...The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity inversion method based on 3D U-Net++.Compared with two-dimensional gravity inversion,three-dimensional(3D)gravity inversion can more precisely describe the density distribution of underground space.However,conventional 3D gravity inversion method input is two-dimensional,the input and output of the network proposed in our method are three-dimensional.In the training stage,we design a large number of diversifi ed simulation model-data pairs by using the random walk method to improve the generalization ability of the network.In the test phase,we verify the network performance by using the model-data pairs generated by the simulation.To further illustrate the eff ectiveness of the algorithm,we apply the method to the inversion of the San Nicolas mining area,and the inversion results are basically consistent with the borehole measurement results.Moreover,the results of the 3D U-Net++inversion and the 3D U-Net inversion are compared.The density models of the 3D U-Net++inversion have higher resolution,more concentrated inversion results,and a clearer boundary of the density model.展开更多
Optimal precursor perturbations of El Nino in the Zebiak-Cane model were explored for three different cost functions. For the different characteristics of the eastern-Pacific (EP) El Nino and the central-Pacific (C...Optimal precursor perturbations of El Nino in the Zebiak-Cane model were explored for three different cost functions. For the different characteristics of the eastern-Pacific (EP) El Nino and the central-Pacific (CP) El Nino, three cost functions were defined as the sea surface temperature anomaly (SSTA) evolutions at prediction time in the whole tropical Pacific, the Nino3 area, and the Nino4 area. For all three cost functions, there were two optimal precursors that developed into El Nino events, called Precursor Ⅰ and Precursor Ⅱ. For Precursor Ⅰ, the SSTA component consisted of an east-west (positive-negative) dipole spanning the entire tropical Pacific basin and the thermocline depth anomaly pattern exhibited a tendency of deepening for the whole of the equatorial Pacific. Precursor Ⅰ can develop into an EP-El Nino event, with the warmest SSTA occurring in the eastern tropical Pacific or into a mixed El Nino event that has features between EP-El Nino and CP-El Nino events. For Precursor Ⅱ, the thermocline deepened anomalously in the eastern equatorial Pacific and the amplitude of deepening was obviously larger than that of shoaling in the central and western equatorial Pacific. Precursor Ⅱ developed into a mixed El Nino event. Both the thermocline depth and wind anomaly played important roles in the development of Precursor Ⅰ and Precursor Ⅱ.展开更多
Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for position...Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for positioning of general aviation aircraft.Aim to acquire the accurate position information of aircraft and detect anomaly data,the ADS-B anomaly data detection model based on deep learning and difference of Gaussian(DoG)approach is proposed.First,according to the characteristic of ADS-B data,the ADS-B position data are transformed into the coordinate system.And the origin of the coordinate system is set up as the take-off point.Then,based on the kinematic principle,the ADS-B anomaly data can be removed.Moreover,the details of the ADS-B position data can be got by the DoG approach.Finally,the long short-term memory(LSTM)neural network is used to optimize the recurrent neural network(RNN)with severe gradient reduction for processing ADS-B data.The position data of ADS-B are reconstructed by the sequence to sequence(seq2seq)model which is composed of LSTM neural network,and the reconstruction error is used to detect the anomalous data.Based on the real flight data of general aviation aircraft,the simulation results show that the anomaly data can be detected effectively by the proposed method of reconstructing ADS-B data with the seq2seq model,and its running time is reduced.Compared with the RNN,the accuracy of anomaly detection is increased by 2.7%.The performance of the proposed model is better than that of the traditional anomaly detection models.展开更多
The abnormality monitoring model (AMM) of cracks in concrete dams is established through integrating safety monitoring theories with abnormality diagnosis methods of cracks. In addition, emphasis is placed on the infl...The abnormality monitoring model (AMM) of cracks in concrete dams is established through integrating safety monitoring theories with abnormality diagnosis methods of cracks. In addition, emphasis is placed on the influence of crack depth on crack mouth opening displacement (CMOD). A linear hypothesis is proposed for the propagation process of cracks in concrete based on the fictitious crack model (FCM). Abnormality points are detected through testing methods of dynamical structure mutation and statistical model mutation. The solution of AMM is transformed into a global optimization problem, which is solved by the particle swarm optimization (PSO) method. Therefore, the AMM of cracks in concrete dams is established and solved completely. In the end of the paper, the proposed model is validated by a typical crack at the 105 m elevation of a concrete gravity arch dam.展开更多
基金the Foundation of Graduate Innovation Center in NUAA(kfjj20190707).
文摘Anomalous trajectory detection and traffic flow classification for complicated airspace are of vital importance to safety and efficiency analysis.Some researchers employed density-based unsupervised machine learning method to exploit these trajectories related to air traffic control(ATC)actions.However,the quality of position data and the tiny density difference between traffic flows in the terminal area make it particularly challenging.To alleviate these two challenges,this paper proposes a novel framework which combines robust deep auto-encoder(RDAE)model and density peak(DP)clustering algorithm.Specifically,the RDAE model is utilized to reconstruct denoising trajectory and identify anomaly trajectories in the terminal area by two different regularizations.Then,the nonlinear components captured by the encoder of RDAE are input in the DP algorithm to classify the global traffic flows.An experiment on a terminal airspace at Guangzhou Baiyun Airport(ZGGG)with anomaly label shows that the proposed combination can automatically capture non-conventional spatiotemporal traffic patterns in the aircraft movement.The superiority of RDAE and combination are also demonstrated by visualizing and quantitatively evaluating the experimental results.
基金supported by the National Natural Science Foundation of China(Grant Nos.40876001 and40890152)the Program for New Century Excellent Talents in University(Grant No.NCET-08-0510)the State Key Development Program for National Basic Research Program of China under contract(Grant No.2007CB-411803)
文摘Interannual variations in the surface and subsurface tropical Indian Ocean were studied using HadlSST and SODA datasets. Wind and heat flux datasets were used to discuss the mechanisms for these variations. Our results indicate that the surface and subsurface variations of the tropical Indian Ocean during Indian Ocean Dipole (IOD) events are significantly different. A prominent characteristic of the eastern pole is the SSTA rebound after a cooling process, which does not take place at the subsurface layer. In the western pole, the surface anomalies last longer than the subsurface anomalies. The subsurface anomalies are strongly correlated with ENSO, while the relationship between the surface anomalies and ENSO is much weaker. And the subsurface anomalies of the two poles are negatively correlated while they are positively correlated at the surface layer. The wind and surface heat flux analysis suggests that the thermocline depth variations are mainly determined by wind stress fields, while the heat flux effect is important on SST.
基金supported by the Science for Earthquake Resilience of China(No.XH18027)Research and Development of Comprehensive Geophysical Field Observing Instrument in China's Mainland(No.Y201703)Research Fund Project of Shandong Earthquake Agency(Nos.JJ1505Y and JJ1602)
文摘Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predictive model for normal data.Furthermore,the prediction errors from the predictive models are used to indicate normal or abnormal behavior.An additional advantage of using the LSTM networks is that the earthquake precursor data can be directly fed into the network without any elaborate preprocessing as required by other approaches.Furthermore,no prior information on abnormal data is needed by these networks as they are trained only using normal data.Experiments using three groups of real data were conducted to compare the anomaly detection results of the proposed method with those of manual recognition.The comparison results indicated that the proposed LSTM network achieves promising results and is viable for detecting anomalies in earthquake precursor data.
基金supported by the National Natural Science Foundation of China(41904115)。
文摘The forward calculation of gravity anomalies is a non-negligible aspect contributing to the time consumption of the entire process of basement relief estimation.In this study,we develop a fast hybrid computing scheme to compute the gravity anomaly of a basement.We use the vertical prism source equation in a given region R centered at a certain gravity observation point and the vertical line source equation outside R to derive the gravity anomaly.We observe that the computation with the vertical line source equation is much faster than that of the vertical prism source equation,but the former is slightly inaccurate.Therefore,our method is highly effi cient and able to avoid the errors caused by the low accuracy of the vertical line source equation near the observation point.We then derive the general principle of choosing the size of R via a series of prism model tests.Our tests on the gravity anomaly over the Los Angeles Basin confirm the correctness of our proposed forward strategy.We modify Bott’s method with an accelerating factor to expedite the inversion procedure and presume that the density contrast between the sediments and the basement in a sedimentary basin varies laterally and can be obtained using the equivalent equation.Synthetic data and real data applications in the Weihe Basin illustrate that our proposed method can accurately and effi ciently estimate the basement relief of sedimentary basins.
基金supported by the Key Laboratory of Geological Survey and Evaluation of Ministry of Education (China University of Geosciences)(No. GLAB2020ZR13)
文摘The gravity inversion is to restore genetic density distribution of the underground target to be explored for explaining the internal structure and distribution of the Earth.In this paper,we propose a new 3D gravity inversion method based on 3D U-Net++.Compared with two-dimensional gravity inversion,three-dimensional(3D)gravity inversion can more precisely describe the density distribution of underground space.However,conventional 3D gravity inversion method input is two-dimensional,the input and output of the network proposed in our method are three-dimensional.In the training stage,we design a large number of diversifi ed simulation model-data pairs by using the random walk method to improve the generalization ability of the network.In the test phase,we verify the network performance by using the model-data pairs generated by the simulation.To further illustrate the eff ectiveness of the algorithm,we apply the method to the inversion of the San Nicolas mining area,and the inversion results are basically consistent with the borehole measurement results.Moreover,the results of the 3D U-Net++inversion and the 3D U-Net inversion are compared.The density models of the 3D U-Net++inversion have higher resolution,more concentrated inversion results,and a clearer boundary of the density model.
基金supported by the National Natural Science Foundation of China (Grant No. 41006007)the National Basic Research Program of China (Grant No. 2012CB417404)
文摘Optimal precursor perturbations of El Nino in the Zebiak-Cane model were explored for three different cost functions. For the different characteristics of the eastern-Pacific (EP) El Nino and the central-Pacific (CP) El Nino, three cost functions were defined as the sea surface temperature anomaly (SSTA) evolutions at prediction time in the whole tropical Pacific, the Nino3 area, and the Nino4 area. For all three cost functions, there were two optimal precursors that developed into El Nino events, called Precursor Ⅰ and Precursor Ⅱ. For Precursor Ⅰ, the SSTA component consisted of an east-west (positive-negative) dipole spanning the entire tropical Pacific basin and the thermocline depth anomaly pattern exhibited a tendency of deepening for the whole of the equatorial Pacific. Precursor Ⅰ can develop into an EP-El Nino event, with the warmest SSTA occurring in the eastern tropical Pacific or into a mixed El Nino event that has features between EP-El Nino and CP-El Nino events. For Precursor Ⅱ, the thermocline deepened anomalously in the eastern equatorial Pacific and the amplitude of deepening was obviously larger than that of shoaling in the central and western equatorial Pacific. Precursor Ⅱ developed into a mixed El Nino event. Both the thermocline depth and wind anomaly played important roles in the development of Precursor Ⅰ and Precursor Ⅱ.
基金supported by the National Key R&D Program of China(No.2018AAA0100804)the Talent Project of Revitalization Liaoning(No.XLYC1907022)+5 种基金the Key R&D Projects of Liaoning Province(No.2020JH2/10100045)the Capacity Building of Civil Aviation Safety(No.TMSA1614)the Natural Science Foundation of Liaoning Province(No.2019-MS-251)the Scientific Research Project of Liaoning Provincial Department of Education(Nos.L201705,L201716)the High-Level Innovation Talent Project of Shenyang(No.RC190030)the Second Young and Middle-Aged Talents Support Program of Shenyang Aerospace University.
文摘Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for positioning of general aviation aircraft.Aim to acquire the accurate position information of aircraft and detect anomaly data,the ADS-B anomaly data detection model based on deep learning and difference of Gaussian(DoG)approach is proposed.First,according to the characteristic of ADS-B data,the ADS-B position data are transformed into the coordinate system.And the origin of the coordinate system is set up as the take-off point.Then,based on the kinematic principle,the ADS-B anomaly data can be removed.Moreover,the details of the ADS-B position data can be got by the DoG approach.Finally,the long short-term memory(LSTM)neural network is used to optimize the recurrent neural network(RNN)with severe gradient reduction for processing ADS-B data.The position data of ADS-B are reconstructed by the sequence to sequence(seq2seq)model which is composed of LSTM neural network,and the reconstruction error is used to detect the anomalous data.Based on the real flight data of general aviation aircraft,the simulation results show that the anomaly data can be detected effectively by the proposed method of reconstructing ADS-B data with the seq2seq model,and its running time is reduced.Compared with the RNN,the accuracy of anomaly detection is increased by 2.7%.The performance of the proposed model is better than that of the traditional anomaly detection models.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51079046, 50909041, 50809025, 50879024)the National Science and Technology Support Plan (Grant Nos. 2008BAB29B03, 2008BAB29B06)+5 种基金the Special Fund of State Key Laboratory of China (Grant Nos. 2009586012, 2009586912, 2010585212)the Fundamental Research Funds for the Central Universities (Grant Nos. 2009B08514, 2010B20414, 2010B01414, 2010B14114)China Hydropower Engineering Consulting Group Co. Science and Technology Support Project (Grant No. CHC-KJ-2007-02)Jiangsu Province "333 High-Level Personnel Training Project" (Grant No. 2017-B08037)Graduate Innovation Program of Universities in Jiangsu Province (Grant No. CX09B_163Z)Science Foundation for The Excellent Youth Scholars of Ministry of Education of China (Grant No. 20070294023)
文摘The abnormality monitoring model (AMM) of cracks in concrete dams is established through integrating safety monitoring theories with abnormality diagnosis methods of cracks. In addition, emphasis is placed on the influence of crack depth on crack mouth opening displacement (CMOD). A linear hypothesis is proposed for the propagation process of cracks in concrete based on the fictitious crack model (FCM). Abnormality points are detected through testing methods of dynamical structure mutation and statistical model mutation. The solution of AMM is transformed into a global optimization problem, which is solved by the particle swarm optimization (PSO) method. Therefore, the AMM of cracks in concrete dams is established and solved completely. In the end of the paper, the proposed model is validated by a typical crack at the 105 m elevation of a concrete gravity arch dam.