期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多任务学习的视频异常检测方法
被引量:
2
1
作者
常兴亚
武云鹤
+1 位作者
陈东岳
邓诗卓
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2023年第8期21-29,共9页
针对异常事件位于图像前景的某个局部区域,且背景区域对于异常检测存在干扰的问题,提出了一种多任务异常检测双流模型,模型架构包含未来帧预测网络和光流重构网络。首先利用前景检测算法获取自然图像和光流图像的目标区域,再将选取的区...
针对异常事件位于图像前景的某个局部区域,且背景区域对于异常检测存在干扰的问题,提出了一种多任务异常检测双流模型,模型架构包含未来帧预测网络和光流重构网络。首先利用前景检测算法获取自然图像和光流图像的目标区域,再将选取的区域送入到编码-解码网络完成未来帧预测和运动重构,对运动特征和表观特征进行提取,最后,使用深度概率网络给出的概率值作为判断异常的决策,并与重构损失及预测损失相结合来判断视频的异常性。本文针对大型场景的3个视频监控数据集(UCSD行人数据集、Avenue、Shanghai Tech)对本文提出的模型进行了异常性评估,所提出的方法在3个数据集上的AUC值分别为97.4%,86.4%,73.4%。与现有工作相比,本文的模型架构简洁且易于训练,异常检测结果更加准确。
展开更多
关键词
异常检测
未来帧预测
运动重构
深度概率估计
多任务学习
下载PDF
职称材料
题名
基于多任务学习的视频异常检测方法
被引量:
2
1
作者
常兴亚
武云鹤
陈东岳
邓诗卓
机构
东北大学信息科学与工程学院
东北大学佛山研究生创新学院
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2023年第8期21-29,共9页
基金
广东省基础与应用基础研究基金(2021B1515120064)项目资助
文摘
针对异常事件位于图像前景的某个局部区域,且背景区域对于异常检测存在干扰的问题,提出了一种多任务异常检测双流模型,模型架构包含未来帧预测网络和光流重构网络。首先利用前景检测算法获取自然图像和光流图像的目标区域,再将选取的区域送入到编码-解码网络完成未来帧预测和运动重构,对运动特征和表观特征进行提取,最后,使用深度概率网络给出的概率值作为判断异常的决策,并与重构损失及预测损失相结合来判断视频的异常性。本文针对大型场景的3个视频监控数据集(UCSD行人数据集、Avenue、Shanghai Tech)对本文提出的模型进行了异常性评估,所提出的方法在3个数据集上的AUC值分别为97.4%,86.4%,73.4%。与现有工作相比,本文的模型架构简洁且易于训练,异常检测结果更加准确。
关键词
异常检测
未来帧预测
运动重构
深度概率估计
多任务学习
Keywords
anomaly detection
future frame prediction
motion reconstruction
deep probability estimation
multi-task learning
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
TH701 [机械工程—精密仪器及机械]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多任务学习的视频异常检测方法
常兴亚
武云鹤
陈东岳
邓诗卓
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部