期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
深度残差特征与熵能量优化运动目标跟踪算法
被引量:
1
1
作者
黄劲潮
《山东大学学报(工学版)》
CAS
CSCD
北大核心
2019年第4期14-23,共10页
针对模型更新的运动目标跟踪算法准确率、实时性和鲁棒性较低的问题,提出一种基于深度残差特征与熵能量优化的运动目标跟踪算法。通过深度残差网络从视频序列中提取深度残差特征,计算深度残差特征的熵能量,并通过二维核变换计算深度频...
针对模型更新的运动目标跟踪算法准确率、实时性和鲁棒性较低的问题,提出一种基于深度残差特征与熵能量优化的运动目标跟踪算法。通过深度残差网络从视频序列中提取深度残差特征,计算深度残差特征的熵能量,并通过二维核变换计算深度频率。由微分方程从深度频率中计算出深度平衡,通过极大似然估计出目标位置和速度等状态信息,完成对运动目标的跟踪。为了验证算法的可行性与有效性,在目标跟踪基准数据集(object tracking basis,OTB)上进行算法对比试验,验证各个算法在运动目标跟踪上的准确性和鲁棒性。试验结果表明,该研究提出的算法比当前最佳算法在运动目标跟踪的速度和位置准确性上都有显著的提升,通过深度残差特征的熵能量优化,使运动目标跟踪算法具有更好的灵活性和鲁棒性。
展开更多
关键词
深度
残差
网络
熵能量
深度残差特征
极大似然估计
运动目标跟踪
原文传递
题名
深度残差特征与熵能量优化运动目标跟踪算法
被引量:
1
1
作者
黄劲潮
机构
龙岩学院数学与信息工程学院
出处
《山东大学学报(工学版)》
CAS
CSCD
北大核心
2019年第4期14-23,共10页
基金
福建省中青年教师教育科研项目(JT180523)
文摘
针对模型更新的运动目标跟踪算法准确率、实时性和鲁棒性较低的问题,提出一种基于深度残差特征与熵能量优化的运动目标跟踪算法。通过深度残差网络从视频序列中提取深度残差特征,计算深度残差特征的熵能量,并通过二维核变换计算深度频率。由微分方程从深度频率中计算出深度平衡,通过极大似然估计出目标位置和速度等状态信息,完成对运动目标的跟踪。为了验证算法的可行性与有效性,在目标跟踪基准数据集(object tracking basis,OTB)上进行算法对比试验,验证各个算法在运动目标跟踪上的准确性和鲁棒性。试验结果表明,该研究提出的算法比当前最佳算法在运动目标跟踪的速度和位置准确性上都有显著的提升,通过深度残差特征的熵能量优化,使运动目标跟踪算法具有更好的灵活性和鲁棒性。
关键词
深度
残差
网络
熵能量
深度残差特征
极大似然估计
运动目标跟踪
Keywords
deep residual network
entropy energy
deep residual features
maximum likelihood estimation
object tracking
分类号
TP391 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
深度残差特征与熵能量优化运动目标跟踪算法
黄劲潮
《山东大学学报(工学版)》
CAS
CSCD
北大核心
2019
1
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部