期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度流场特征和语义约束的改进SegFormer语义分割算法
1
作者 高延海 《现代信息科技》 2024年第18期71-74,共4页
对于SegFormer网络中存在的多尺度信息无法有效利用,以及预测结果边界轮廓不清晰的问题,提出一种基于深度流场特征和语义约束的改进语义分割网络架构。首先,在解码器部分加入深度流场模块用于加强深度特征的一致性;然后为保持原有网络... 对于SegFormer网络中存在的多尺度信息无法有效利用,以及预测结果边界轮廓不清晰的问题,提出一种基于深度流场特征和语义约束的改进语义分割网络架构。首先,在解码器部分加入深度流场模块用于加强深度特征的一致性;然后为保持原有网络的轻量化,加入边界和前后景辅助任务构成语义约束模块,提高网络对边界和整体轮廓的提取能力;最后,在语义约束模块中加入边界引导模块,加快辅助任务收敛速度。通过增加了0.1 M的参数量,提高了网络的分割精度。 展开更多
关键词 SegFormer 语义分割 轻量化 深度流场 辅助任务
下载PDF
融合相似性原理的涡轮叶型流场预测方法研究 被引量:1
2
作者 郭振东 成辉 +4 位作者 陈云 蒋首民 宋立明 李军 丰镇平 《力学学报》 EI CAS CSCD 北大核心 2023年第11期2647-2660,共14页
计算流体力学(CFD)方法是涡轮叶片等设计阶段性能评估的重要手段.然而,基于CFD的数值仿真方法通常比较耗时,难以满足涡轮叶型设计阶段快速迭代的需求.为实现快速性能评估并克服纯数据驱动预测模型泛化能力不足的问题,受到物理增强的机... 计算流体力学(CFD)方法是涡轮叶片等设计阶段性能评估的重要手段.然而,基于CFD的数值仿真方法通常比较耗时,难以满足涡轮叶型设计阶段快速迭代的需求.为实现快速性能评估并克服纯数据驱动预测模型泛化能力不足的问题,受到物理增强的机器学习思路的启发,将相似性原理与深度学习模型相结合,提出了一种泛化能力强的涡轮叶型流场预测新方法.以涡轮叶片表面等熵马赫数分布预测为例,提出采用相似性原理对叶型几何变量和气动参数进行归一化,进而在归一化参数空间构建训练样本集与深度学习预测模型,由此建立统一的流场预测模型,对几何尺寸、边界条件差异较大的叶型气动性能进行评估.在完成模型训练后,对归一化条件下不同工况/不同形状叶型的流场、真实环境下不同工况/不同尺寸叶型的流场以及GE-E3低压涡轮不同截面叶型的流场进行预测,结果表明预测结果的分布曲线与CFD评估结果吻合良好,平均相对误差在1.0%左右,由此验证了所提出的融合相似性原理的流场预测模型的精度与泛化能力. 展开更多
关键词 深度学习流场预测 物理增强的机器学习 相似性原理 数据驱动模型 气动分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部