期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度流场特征和语义约束的改进SegFormer语义分割算法
1
作者
高延海
《现代信息科技》
2024年第18期71-74,共4页
对于SegFormer网络中存在的多尺度信息无法有效利用,以及预测结果边界轮廓不清晰的问题,提出一种基于深度流场特征和语义约束的改进语义分割网络架构。首先,在解码器部分加入深度流场模块用于加强深度特征的一致性;然后为保持原有网络...
对于SegFormer网络中存在的多尺度信息无法有效利用,以及预测结果边界轮廓不清晰的问题,提出一种基于深度流场特征和语义约束的改进语义分割网络架构。首先,在解码器部分加入深度流场模块用于加强深度特征的一致性;然后为保持原有网络的轻量化,加入边界和前后景辅助任务构成语义约束模块,提高网络对边界和整体轮廓的提取能力;最后,在语义约束模块中加入边界引导模块,加快辅助任务收敛速度。通过增加了0.1 M的参数量,提高了网络的分割精度。
展开更多
关键词
SegFormer
语义分割
轻量化
深度流场
辅助任务
下载PDF
职称材料
融合相似性原理的涡轮叶型流场预测方法研究
被引量:
1
2
作者
郭振东
成辉
+4 位作者
陈云
蒋首民
宋立明
李军
丰镇平
《力学学报》
EI
CAS
CSCD
北大核心
2023年第11期2647-2660,共14页
计算流体力学(CFD)方法是涡轮叶片等设计阶段性能评估的重要手段.然而,基于CFD的数值仿真方法通常比较耗时,难以满足涡轮叶型设计阶段快速迭代的需求.为实现快速性能评估并克服纯数据驱动预测模型泛化能力不足的问题,受到物理增强的机...
计算流体力学(CFD)方法是涡轮叶片等设计阶段性能评估的重要手段.然而,基于CFD的数值仿真方法通常比较耗时,难以满足涡轮叶型设计阶段快速迭代的需求.为实现快速性能评估并克服纯数据驱动预测模型泛化能力不足的问题,受到物理增强的机器学习思路的启发,将相似性原理与深度学习模型相结合,提出了一种泛化能力强的涡轮叶型流场预测新方法.以涡轮叶片表面等熵马赫数分布预测为例,提出采用相似性原理对叶型几何变量和气动参数进行归一化,进而在归一化参数空间构建训练样本集与深度学习预测模型,由此建立统一的流场预测模型,对几何尺寸、边界条件差异较大的叶型气动性能进行评估.在完成模型训练后,对归一化条件下不同工况/不同形状叶型的流场、真实环境下不同工况/不同尺寸叶型的流场以及GE-E3低压涡轮不同截面叶型的流场进行预测,结果表明预测结果的分布曲线与CFD评估结果吻合良好,平均相对误差在1.0%左右,由此验证了所提出的融合相似性原理的流场预测模型的精度与泛化能力.
展开更多
关键词
深度
学习
流场
预测
物理增强的机器学习
相似性原理
数据驱动模型
气动分析
下载PDF
职称材料
题名
基于深度流场特征和语义约束的改进SegFormer语义分割算法
1
作者
高延海
机构
青岛理工大学
出处
《现代信息科技》
2024年第18期71-74,共4页
文摘
对于SegFormer网络中存在的多尺度信息无法有效利用,以及预测结果边界轮廓不清晰的问题,提出一种基于深度流场特征和语义约束的改进语义分割网络架构。首先,在解码器部分加入深度流场模块用于加强深度特征的一致性;然后为保持原有网络的轻量化,加入边界和前后景辅助任务构成语义约束模块,提高网络对边界和整体轮廓的提取能力;最后,在语义约束模块中加入边界引导模块,加快辅助任务收敛速度。通过增加了0.1 M的参数量,提高了网络的分割精度。
关键词
SegFormer
语义分割
轻量化
深度流场
辅助任务
Keywords
SegFormer
semantic segmentation
lightweight
deep flow field
auxiliary task
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
融合相似性原理的涡轮叶型流场预测方法研究
被引量:
1
2
作者
郭振东
成辉
陈云
蒋首民
宋立明
李军
丰镇平
机构
西安交通大学能源与动力工程学院
中国航发沈阳发动机研究所
出处
《力学学报》
EI
CAS
CSCD
北大核心
2023年第11期2647-2660,共14页
基金
国家科技重大专项(2019-II-0008-0028)
国家自然科学基金(51936008,52306048)资助项目。
文摘
计算流体力学(CFD)方法是涡轮叶片等设计阶段性能评估的重要手段.然而,基于CFD的数值仿真方法通常比较耗时,难以满足涡轮叶型设计阶段快速迭代的需求.为实现快速性能评估并克服纯数据驱动预测模型泛化能力不足的问题,受到物理增强的机器学习思路的启发,将相似性原理与深度学习模型相结合,提出了一种泛化能力强的涡轮叶型流场预测新方法.以涡轮叶片表面等熵马赫数分布预测为例,提出采用相似性原理对叶型几何变量和气动参数进行归一化,进而在归一化参数空间构建训练样本集与深度学习预测模型,由此建立统一的流场预测模型,对几何尺寸、边界条件差异较大的叶型气动性能进行评估.在完成模型训练后,对归一化条件下不同工况/不同形状叶型的流场、真实环境下不同工况/不同尺寸叶型的流场以及GE-E3低压涡轮不同截面叶型的流场进行预测,结果表明预测结果的分布曲线与CFD评估结果吻合良好,平均相对误差在1.0%左右,由此验证了所提出的融合相似性原理的流场预测模型的精度与泛化能力.
关键词
深度
学习
流场
预测
物理增强的机器学习
相似性原理
数据驱动模型
气动分析
Keywords
deep learning based flow field prediction
physics-augmented machine learning
similarity principle
data-driven model
aerodynamic analysis
分类号
TK14 [动力工程及工程热物理—热能工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度流场特征和语义约束的改进SegFormer语义分割算法
高延海
《现代信息科技》
2024
0
下载PDF
职称材料
2
融合相似性原理的涡轮叶型流场预测方法研究
郭振东
成辉
陈云
蒋首民
宋立明
李军
丰镇平
《力学学报》
EI
CAS
CSCD
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部