The Rutherford backscattering (RBS) spectra of N+-implanted GaAs are measured with a He+ ion beam of 2.1MeV. The backscattering yield along 【 100 】 aligned incidence increases with the increase in implanted doses. T...The Rutherford backscattering (RBS) spectra of N+-implanted GaAs are measured with a He+ ion beam of 2.1MeV. The backscattering yield along 【 100 】 aligned incidence increases with the increase in implanted doses. The depth profiles of nitrogen and arsenic are measured by secondary ion mass spectrometer (SIMS).The diffusion of nitrogen in the implanted layers is explained as interstitial migration. The damage is very severe during the ion implantation, and it can be recovered psrtly by annealing. The two-step annealing improves the effect obviously. The calculstion on distribution of damage shows that the recovery is proceeded from the inner side to the surface during the annealing. The mechanism of damage is discussed briefly.展开更多
文摘The Rutherford backscattering (RBS) spectra of N+-implanted GaAs are measured with a He+ ion beam of 2.1MeV. The backscattering yield along 【 100 】 aligned incidence increases with the increase in implanted doses. The depth profiles of nitrogen and arsenic are measured by secondary ion mass spectrometer (SIMS).The diffusion of nitrogen in the implanted layers is explained as interstitial migration. The damage is very severe during the ion implantation, and it can be recovered psrtly by annealing. The two-step annealing improves the effect obviously. The calculstion on distribution of damage shows that the recovery is proceeded from the inner side to the surface during the annealing. The mechanism of damage is discussed briefly.