空间正则化相关滤波算法跟踪过程中仅采用手工特征表征目标,高斯-赛德尔方法训练滤波器的复杂度高,跟踪结果不可靠时仍逐帧更新模型,导致跟踪效果不佳。针对空间正则化相关滤波算法存在的问题,提出深度特征目标感知交替方向乘子法(Alter...空间正则化相关滤波算法跟踪过程中仅采用手工特征表征目标,高斯-赛德尔方法训练滤波器的复杂度高,跟踪结果不可靠时仍逐帧更新模型,导致跟踪效果不佳。针对空间正则化相关滤波算法存在的问题,提出深度特征目标感知交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)优化多指标更新相关滤波跟踪算法。该算法融入预训练网络提取的深度特征,并依回归损失的梯度信息进行通道选择,增强了对目标的表征能力;采用交替方向乘子法训练相关滤波器,降低算法复杂度,提升跟踪速度;根据多指标更新方法判断是否进行模型更新,不但提升了算法运行效率,而且避免了因学习到错误信息而导致的模型腐败。实验结果表明,所提算法的成功率、精确度在数据集OTB2015上均优于其它8种对比算法,且在复杂场景下具有更强的跟踪鲁棒性。展开更多
文摘空间正则化相关滤波算法跟踪过程中仅采用手工特征表征目标,高斯-赛德尔方法训练滤波器的复杂度高,跟踪结果不可靠时仍逐帧更新模型,导致跟踪效果不佳。针对空间正则化相关滤波算法存在的问题,提出深度特征目标感知交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)优化多指标更新相关滤波跟踪算法。该算法融入预训练网络提取的深度特征,并依回归损失的梯度信息进行通道选择,增强了对目标的表征能力;采用交替方向乘子法训练相关滤波器,降低算法复杂度,提升跟踪速度;根据多指标更新方法判断是否进行模型更新,不但提升了算法运行效率,而且避免了因学习到错误信息而导致的模型腐败。实验结果表明,所提算法的成功率、精确度在数据集OTB2015上均优于其它8种对比算法,且在复杂场景下具有更强的跟踪鲁棒性。