期刊文献+
共找到116篇文章
< 1 2 6 >
每页显示 20 50 100
基于深度生成对抗网络的房屋渗漏图像生成与检测在带电作业机器人中的应用研究
1
作者 董璇 张泽斌 +2 位作者 闫人滏 崔倩雯 苏克 《中文科技期刊数据库(全文版)工程技术》 2023年第5期57-60,共4页
本文针对带电作业机器人在高压、高温、高辐射等极端环境下的安全性问题,提出了两种基于深度学习和卷积神经网络的技术:一是基于移动本体和机械臂的分体式双目视觉系统,用于实现自主导航、物体识别和抓取等任务;二是基于深度生成对抗网... 本文针对带电作业机器人在高压、高温、高辐射等极端环境下的安全性问题,提出了两种基于深度学习和卷积神经网络的技术:一是基于移动本体和机械臂的分体式双目视觉系统,用于实现自主导航、物体识别和抓取等任务;二是基于深度生成对抗网络的房屋渗漏图像生成与检测技术,用于实现对渗漏物体的自动检测和定位。本文详细介绍了这两种技术的相关原理、应用和实验结果,并探讨了未来的研究方向。 展开更多
关键词 深度生成对抗网络 房屋渗漏图像 带电作业机器人
下载PDF
基于格拉姆角场与深度卷积生成对抗网络的行星齿轮箱故障诊断 被引量:2
2
作者 古莹奎 石昌武 陈家芳 《噪声与振动控制》 CSCD 北大核心 2024年第1期111-118,共8页
针对行星齿轮箱故障诊断中样本分布不均衡所引起的模型泛化能力差及诊断精度低等问题,采用格拉姆角场图像编码技术和深度卷积生成对抗网络相结合进行数据增强,融合AlexNet卷积神经网络进行故障诊断。将采集到的一维振动信号转化为格拉... 针对行星齿轮箱故障诊断中样本分布不均衡所引起的模型泛化能力差及诊断精度低等问题,采用格拉姆角场图像编码技术和深度卷积生成对抗网络相结合进行数据增强,融合AlexNet卷积神经网络进行故障诊断。将采集到的一维振动信号转化为格拉姆角场图,按比例划分训练集与测试集,将训练集样本与随机向量输入到深度卷积生成对抗网络模型中,交替训练生成器与判别器,达到纳什平衡,生成与原始样本类似的生成样本,从而实现故障样本的增广。用原始样本与生成的增广样本训练卷积神经网络分类模型,完成行星齿轮箱的故障识别。实验结果表明,所提方法能够有效提升样本不均衡条件下的行星齿轮箱故障诊断精度,使之达到99.15%,且能使收敛速度更快。 展开更多
关键词 故障诊断 格拉姆角场 深度卷积生成对抗网络 卷积神经网络 行星齿轮箱
下载PDF
基于深度卷积生成式对抗网络的船型特征认知与条件生成方法
3
作者 杜林 李胜忠 +3 位作者 李广年 舒跃辉 刘子祥 赵峰 《船舶力学》 EI CSCD 北大核心 2024年第8期1162-1174,共13页
船体型值与图片一样也是序列相关型数据,所以用于生成图片的神经网络模型也能生成船型数据。由于船舶种类繁多、需求复杂,本文研究重点从船舶水线上下、船艏、舯、艉等区域位置特征,和船舶设计中普遍存在球艏、尾轴、艏部外板升高等全... 船体型值与图片一样也是序列相关型数据,所以用于生成图片的神经网络模型也能生成船型数据。由于船舶种类繁多、需求复杂,本文研究重点从船舶水线上下、船艏、舯、艉等区域位置特征,和船舶设计中普遍存在球艏、尾轴、艏部外板升高等全局几何特征的条件生成需求出发,训练条件深度卷积生成式对抗网络模型(Con⁃ditional Deep Convolutional Generative Adversarial Networks)来实现两种特征的条件认知与生成。首先,将实现船型区域位置特征与全局几何特征的条件生成作为目标,分别建立条件深度卷积生成式对抗网络模型;然后,针对两类特征设置若干从易到难的不同分割方案和特征种类,使神经网络能够循序渐进地完成条件生成任务;最后,通过对训练过程和生成结果进行对比,初步证明所研究方法用于解决船型特征条件生成问题的可行性。本研究延续了作者之前的研究成果,属于基于计算机视觉技术的船型智能设计方法领域,旨在进一步探索引入人工智能实现船型智能设计的可行性方法。 展开更多
关键词 船型智能设计 深度卷积生成对抗网络 计算机视觉
下载PDF
改进深度卷积生成式对抗网络的文本生成图像
4
作者 李云红 朱绵云 +3 位作者 任劼 苏雪平 周小计 于惠康 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第8期1875-1883,共9页
针对深度卷积生成式对抗网络(DCGAN)模型高维文本输入表示的稀疏性导致以文本为条件生成的图像结构缺失和图像不真实的问题,提出了一种改进深度卷积生成式对抗网络模型CA-DCGAN。采用深度卷积网络和循环文本编码器对输入的文本进行编码... 针对深度卷积生成式对抗网络(DCGAN)模型高维文本输入表示的稀疏性导致以文本为条件生成的图像结构缺失和图像不真实的问题,提出了一种改进深度卷积生成式对抗网络模型CA-DCGAN。采用深度卷积网络和循环文本编码器对输入的文本进行编码,得到文本的特征向量表示。引入条件增强(CA)模型,通过文本特征向量的均值和协方差矩阵产生附加的条件变量,代替原来的高维文本特征向量。将条件变量与随机噪声结合作为生成器的输入,并在生成器的损失中额外加入KL损失正则化项,避免模型训练过拟合,使模型可以更好的收敛,在判别器中使用谱约束(SN)层,防止其梯度下降太快造成生成器与判别器不平衡训练而发生模式崩溃的问题。实验验证结果表明:所提模型在Oxford-102-flowers和CUB-200数据集上生成的图像质量较alignDRAW、GAN-CLS、GAN-INT-CLS、StackGAN(64×64)、StackGAN-v1(64×64)模型更好且接近于真实样本,初始得分值最低分别提高了10.9%和5.6%,最高分别提高了41.4%和37.5%,FID值最低分别降低了11.4%和8.4%,最高分别降低了43.9%和42.5%,进一步表明了所提模型的有效性。 展开更多
关键词 深度卷积生成对抗网络 文本生成图像 文本特征表示 条件增强 KL正则化
下载PDF
基于深度卷积生成式对抗网络的菌草丙二醛含量可见/近红外光谱反演
5
作者 叶大鹏 陈晨 +3 位作者 李慧琳 雷莹晓 翁海勇 瞿芳芳 《智慧农业(中英文)》 CSCD 2023年第3期132-141,共10页
[目的/意义]菌草是多年生可用作饲料与生物质能源的草本植物,在温带种植需克服越冬问题。低温胁迫会对菌草的生长发育造成不利影响。丙二醛(Malondialdehyde,MDA)作为诊断菌草低温胁迫状态的有力诊断指标,利用光谱技术反演MDA含量,可快... [目的/意义]菌草是多年生可用作饲料与生物质能源的草本植物,在温带种植需克服越冬问题。低温胁迫会对菌草的生长发育造成不利影响。丙二醛(Malondialdehyde,MDA)作为诊断菌草低温胁迫状态的有力诊断指标,利用光谱技术反演MDA含量,可快速无损地评估菌草生长动态,为菌草育种及低温胁迫诊断提供参考。[方法]本研究基于6个品种的菌草植株,设置低温胁迫组与常温对照组,获取菌草苗期的可见/近红外光谱(Visible/Near Infrared Spectrum,VIS/NIR)数据与叶片MDA含量信息,分析低温胁迫条件下菌草MDA含量及其光谱反射率均相应增加的变化趋势;为提升模型的检测效果,提出了改进的一维深度卷积生成式对抗网络(Deep Convolutional Generative Adversarial Networks,DCGAN)用于样本数量增广,并建立基于随机森林(Random Forest,RF)、偏最小二乘回归(Partial Least Squares Regression,PLSR)以及卷积神经网络(Convolutional Neural Networks,CNN)算法的MDA光谱定量检测模型。[结果和讨论] DCGAN可优化模型的可靠性与MDA检测精度,且DCGAN联合RF模型可以得到最佳的检测效果,其中预测集决定系数Rp2为0.7922,均方根误差为2.4063,残差预测偏差(Residual Predictive Deviation,RPD)为2.1937。[结论]本研究利用DCGAN进行样本数量增广,能显著提升基于光谱数据的模型对菌草MDA含量的反演精度与预测性能。 展开更多
关键词 菌草 可见/近红外光谱 深度卷积生成对抗网络 低温胁迫 机器学习
下载PDF
基于深度卷积生成对抗网络的半生成式视频隐写方案
6
作者 林洋平 刘佳 +2 位作者 陈培 张明书 杨晓元 《计算机应用》 CSCD 北大核心 2023年第1期169-175,共7页
生成式隐写通过生成足够自然或真实的含密样本来隐藏秘密消息,是信息隐藏方向的研究热点,但目前在视频隐写领域的研究还比较少。结合数字化卡登格的思想,提出一种基于深度卷积生成对抗网络(DCGAN)的半生成式视频隐写方案。该方案中,设... 生成式隐写通过生成足够自然或真实的含密样本来隐藏秘密消息,是信息隐藏方向的研究热点,但目前在视频隐写领域的研究还比较少。结合数字化卡登格的思想,提出一种基于深度卷积生成对抗网络(DCGAN)的半生成式视频隐写方案。该方案中,设计了基于DCGAN的双流视频生成网络,用来生成视频的动态前景、静态后景与时空掩模三个部分,并以随机噪声驱动生成不同的视频。方案中的发送方可设定隐写阈值,在掩模中自适应地生成数字化卡登格,并将其作为隐写与提取的密钥;同时以前景作为载体,实现信息的最优嵌入。实验结果表明,该方案生成的含密视频具有良好的视觉质量,Frechet Inception距离(FID)值为90,且嵌入容量优于现有的生成式隐写方案,最高可达0.11 bpp,能够更高效地传输秘密消息。 展开更多
关键词 视频隐写 生成 深度学习 深度卷积生成对抗网络 对抗性训练 数字化卡登格
下载PDF
基于深度卷积生成对抗网络的大脑年龄预测方法研究
7
作者 熊敏 康文杰 林岚 《医疗卫生装备》 CAS 2023年第12期1-6,共6页
目的:提出一种基于深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN)的大脑年龄预测方法,以客观评估大脑健康状态。方法:首先,将二维DCGAN扩展到三维DCGAN,并在DCGAN中加入残差块改进DCGAN模型,以提高... 目的:提出一种基于深度卷积生成对抗网络(deep convolutional generative adversarial network,DCGAN)的大脑年龄预测方法,以客观评估大脑健康状态。方法:首先,将二维DCGAN扩展到三维DCGAN,并在DCGAN中加入残差块改进DCGAN模型,以提高特征提取能力。其次,使用无监督对抗学习来预训练分类器,使用迁移学习来微调分类器,以解决三维卷积神经网络(convolutional neural network,CNN)中由于小规模样本而导致的过度拟合问题。为验证改进模型的有效性,在英国生物银行(UK Biobank,UKB)数据库上,采用平均绝对误差(mean absolute error,MAE)作为评价指标,将该模型与最小绝对收缩选择算子(least absolute shrinkage and selection operator,LASSO)模型、机器学习模型、三维CNN模型和图卷积网络模型进行对比。结果:提出的模型在预测脑年龄方面表现优秀,MAE为2.896年,明显优于LASSO模型、机器学习模型、CNN模型和图卷积网络模型。结论:提出的方法在大规模数据集上具有较好的性能,能够较为准确地预测大脑年龄,可客观评估大脑健康状态。 展开更多
关键词 脑年龄预测 深度卷积生成对抗网络 卷积神经网络 深度学习 机器学习
下载PDF
基于深度卷积生成对抗网络和卷积神经网络的叶片病虫害问题研究
8
作者 魏财根 林炜鑫 赵晨 《木工机床》 2023年第2期16-20,36,共6页
传统的机器学习和深度学习方法耗时费力、泛化性能较低且需要大量样本数据,因此需要一种能在小样本情况下准确识别植物病虫害的方法。文章利用深度卷积生成对抗网络生成大量包含叶片病虫害的合成图像数据集,结合卷积神经网络进行叶片病... 传统的机器学习和深度学习方法耗时费力、泛化性能较低且需要大量样本数据,因此需要一种能在小样本情况下准确识别植物病虫害的方法。文章利用深度卷积生成对抗网络生成大量包含叶片病虫害的合成图像数据集,结合卷积神经网络进行叶片病虫害的自动检测和识别,探讨深度卷积生成对抗网络和卷积神经网络应用于叶片病虫害问题的可行性和有效性。实验证明,该方法在小样本情况下能够准确识别叶片病虫害,具有较高的准确性和鲁棒性,为解决植物病虫害问题提供了一种新的方法。 展开更多
关键词 叶片病虫害 卷积神经网络 深度卷积生成对抗网络
下载PDF
基于深度卷积生成对抗网络场景生成的间歇式分布式电源优化配置 被引量:22
9
作者 顾洁 刘书琪 +1 位作者 胡玉 孟璐 《电网技术》 EI CSCD 北大核心 2021年第5期1742-1749,共8页
风电和光伏等间歇性分布式电源(distributed generation,DG)在配电网中接入比例不断提高,对配电网规划影响显著,需对其出力的不确定性进行建模,以提升含DG的配电网规划的效益与实用性。建立了考虑出力不确定性的DG双层优化配置模型。通... 风电和光伏等间歇性分布式电源(distributed generation,DG)在配电网中接入比例不断提高,对配电网规划影响显著,需对其出力的不确定性进行建模,以提升含DG的配电网规划的效益与实用性。建立了考虑出力不确定性的DG双层优化配置模型。通过改进的条件深度卷积生成对抗网络模型对DG出力的不确定性进行建模,并在模型中加入月份标签信息以生成面向规划的风光联合出力场景;基于高斯混合模型确定月份标签对应的风光出力的上下限,从而刻画DG出力的不确定性范围。最后,考虑DG出力的运行边界,建立了社会综合成本最小化的DG双层优化配置模型。IEEE 33节点算例验证表明,提出的DG优化配置方案能够提升DG的接入容量,有效降低社会综合成本,提高配电网运行的经济性。 展开更多
关键词 不确定性 场景生成 条件深度卷积生成对抗网络 高斯混合模型 双层优化配置
下载PDF
基于改进深度卷积对抗生成网络的肺结节良恶性分类 被引量:4
10
作者 李莉 张浩洋 乔璐 《计算机工程》 CAS CSCD 北大核心 2020年第12期262-269,共8页
为提高肺结节良恶性识别的准确率,构建改进深度卷积对抗生成网络(DCGAN)框架与半监督模糊C均值(FCM)聚类结合的SFDG肺结节良恶性识别模型。将带有良恶性等级标签的肺结节图像输入到DCGAN框架,使得只有来源分类能力的判别器网络同时具备... 为提高肺结节良恶性识别的准确率,构建改进深度卷积对抗生成网络(DCGAN)框架与半监督模糊C均值(FCM)聚类结合的SFDG肺结节良恶性识别模型。将带有良恶性等级标签的肺结节图像输入到DCGAN框架,使得只有来源分类能力的判别器网络同时具备肺结节等级分类能力。在判别过程中运用半监督FCM聚类方法,对输入肺结节图像进行特征提取和量化,将输出的当前图像所属类别概率及判别结果与真实结果进行比较来调整网络参数。通过设定加权损失函数最大概率提高模型识别准确率,训练得出具有良好鲁棒性的网络模型。实验结果表明,改进模型的判别器网络具有良好的肺结节良恶性分类能力,准确率高达90.96%。 展开更多
关键词 良恶性分类 卷积神经网络 特征量化 深度卷积对抗生成网络 半监督模糊C均值方法
下载PDF
一种改进深度卷积生成对抗网络的人脸分割方法 被引量:4
11
作者 刘柏森 邓琛 张雾琳 《黑龙江工程学院学报》 CAS 2019年第5期1-6,共6页
在智能算法领域,人脸识别是一个重要的算法部分,而人脸分割又是人脸识别的一个重要组成部分。提出一种基于改进的深度卷积生成式对抗网络的人脸分割方法,将端到端的图像变换模式应用于生成器中,利用生成器对人脸图像进行分割。深度卷积... 在智能算法领域,人脸识别是一个重要的算法部分,而人脸分割又是人脸识别的一个重要组成部分。提出一种基于改进的深度卷积生成式对抗网络的人脸分割方法,将端到端的图像变换模式应用于生成器中,利用生成器对人脸图像进行分割。深度卷积生成式对抗网络将卷积层加入到生成器和判别器,使得生成器通过反卷积产生图像,而文中在反卷积之前再加入卷积层,组合形成全卷积的网络结构,将生成器的图像生成功能扩展成为语义分割功能。同时,生成器的输入原图和输出标签的通道组合作为判别器的判别对象,通过判别器来评判分割水平,进一步提高分割的标签与输入原图的关联性。经过多次实验,验证此方法能有效分割人脸主要区域。 展开更多
关键词 深度学习 语义分割 人脸分割 生成对抗网络 深度卷积生成对抗网络
下载PDF
基于生成对抗网络的电能质量扰动数据增强方法 被引量:1
12
作者 胥家伟 吕干云 贾德香 《电气自动化》 2023年第1期65-68,共4页
针对当前电能质量扰动自动识别受样本集的规模和质量影响较大及扰动数据匮乏的问题,提出一种在二维尺度上结合深度卷积生成对抗网络(deep convolutional generative adversarail networks,DCGAN)对电能质量扰动数据进行增强的方法。将... 针对当前电能质量扰动自动识别受样本集的规模和质量影响较大及扰动数据匮乏的问题,提出一种在二维尺度上结合深度卷积生成对抗网络(deep convolutional generative adversarail networks,DCGAN)对电能质量扰动数据进行增强的方法。将典型扰动二维图像数据作为输入,以提高数据特征提取能力,再通过深度卷积生成对抗网络不断生成优化扰动数据,并选择验证集上取得最高AUC值的增强数据集进行电能质量扰动的识别测试。在某电网公司提供的真实数据集上进行测试,结果表明:基于DCGAN数据增强方法能生成较大规模、高质量的数据,在网络训练速度及电能质量扰动识别的准确率上有明显提升。 展开更多
关键词 电能质量 深度卷积生成对抗网络 二维图像 扰动识别 数据增强
下载PDF
多层感知器深度卷积生成对抗网络 被引量:6
13
作者 王格格 郭涛 李贵洋 《计算机科学》 CSCD 北大核心 2019年第9期243-249,共7页
生成对抗网络(GAN)是目前图像生成领域中一种新的、有效的训练生成模型方法。深度卷积生成对抗网络(DCGAN)作为GAN的一种延伸,将卷积神经网络引入到生成模型中进行无监督训练。但DCGAN的线性卷积层对于下层数据块是一个广义线性模型,其... 生成对抗网络(GAN)是目前图像生成领域中一种新的、有效的训练生成模型方法。深度卷积生成对抗网络(DCGAN)作为GAN的一种延伸,将卷积神经网络引入到生成模型中进行无监督训练。但DCGAN的线性卷积层对于下层数据块是一个广义线性模型,其抽象层次较低,生成的图像质量不高,并且在模型性能度量方面仅以主观的视觉感受来评判图像质量。针对以上问题,文中提出了一种多层感知器深度卷积生成对抗网络(MPDCGAN),采用多层感知器卷积层取代广义线性模型在输入数据上进行卷积,以捕获图像更深层次的特征,并采用定量评估方法Frechet Inception Distance(FID)衡量图像生成质量。在4种基准数据集上的实验结果表明,采用MPDCGAN生成的图像的 FID 值与图像质量呈负相关关系,且图像生成质量随着 FID 值的降低得到了进一步的提高。 展开更多
关键词 生成对抗网络 深度卷积生成对抗网络 多层感知器 FID
下载PDF
基于半监督深度卷积生成对抗网络的注塑瓶表面缺陷检测模型 被引量:3
14
作者 谢源 苗玉彬 +1 位作者 许凤麟 张铭 《计算机科学》 CSCD 北大核心 2020年第7期92-96,共5页
注塑瓶表面缺陷检测是注塑成型工艺流程中的重要环节,但生产中存在缺陷的注塑瓶样本数量相对匮乏,使得应用深度学习算法进行缺陷检测时容易产生过拟合现象。针对上述问题,文中提出并构建一种半监督(Semi-supervised)深度卷积生成对抗网... 注塑瓶表面缺陷检测是注塑成型工艺流程中的重要环节,但生产中存在缺陷的注塑瓶样本数量相对匮乏,使得应用深度学习算法进行缺陷检测时容易产生过拟合现象。针对上述问题,文中提出并构建一种半监督(Semi-supervised)深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network,DCGAN)模型。该模型首先使用HSV(Hue Saturation Va-lue)颜色空间转换与大津算法(Otsu)对原始注塑瓶图像进行预处理得到训练集;然后组合学习任务,使得DCGAN的无监督判别器与注塑瓶表面缺陷检测的监督分类器共享卷积层参数,同时修改损失函数,在DCGAN模型的Wasserstein距离中加入交叉熵;最后使用Adam优化器进行模型训练。实验结果表明,该模型能够准确分辨具有缺陷的注塑瓶样本,分类准确率达到98.65%。与传统的机器学习算法以及采用数据增强的卷积神经网络模型相比,所提模型的分类准确率更高,且较好地避免了过拟合现象,能满足注塑瓶生产中表面缺陷的自动检测需求。 展开更多
关键词 深度卷积生成对抗网络 半监督 小样本 缺陷检测 注塑瓶
下载PDF
基于改进深度卷积生成对抗网络的路面指示标志识别方法 被引量:1
15
作者 程校昭 陈志军 +1 位作者 吴超仲 马枫 《交通信息与安全》 CSCD 北大核心 2020年第2期47-54,共8页
针对道路交通环境中路面标志识别涉及的数据集较少和识别准确率不足的问题,研究了基于深度卷积生成对抗网络的道路表面指示标志的识别方法。在深度卷积生成对抗网络的结构基础上,根据具体应用修改生成网络和判别网络的损失函数,并用随... 针对道路交通环境中路面标志识别涉及的数据集较少和识别准确率不足的问题,研究了基于深度卷积生成对抗网络的道路表面指示标志的识别方法。在深度卷积生成对抗网络的结构基础上,根据具体应用修改生成网络和判别网络的损失函数,并用随机梯度下降算法替代原始的优化器,对指示标志的原始样本集进行样本生成,以增加样本数据量。基于Faster R-CNN算法进行路面标志的特征提取,实现路面指示标志的识别,并基于迁移学习对识别模型进行微调,将目标识别效果应用于实际道路环境中。实验结果表明,通过深度卷积生成对抗网络生成的样本图像有效地扩增了路面标志的数据集,增广后的多类目标识别的mAP提高了17.1%,小样本情况下的识别准确率随着样本量的增加和样本质量的改善而得到了明显的提高。 展开更多
关键词 智能交通 路面标志识别 深度卷积生成对抗网络 Faster R-CNN 数据增强
下载PDF
基于深度卷积生成对抗网络和拓展近邻重排序的行人重识别 被引量:24
16
作者 戴臣超 王洪元 +1 位作者 倪彤光 陈首兵 《计算机研究与发展》 EI CSCD 北大核心 2019年第8期1632-1641,共10页
行人重识别任务旨在识别不相交摄像头视图下的相同行人.这项任务极具挑战性,尤其是当数据集中每个行人仅仅有几张图片时.针对行人重识别数据集中行人图片数量不足的问题,提出一个从原始数据集中生成额外训练数据的方法.在这项工作之中存... 行人重识别任务旨在识别不相交摄像头视图下的相同行人.这项任务极具挑战性,尤其是当数据集中每个行人仅仅有几张图片时.针对行人重识别数据集中行人图片数量不足的问题,提出一个从原始数据集中生成额外训练数据的方法.在这项工作之中存在2个挑战:1)如何从原始数据集之中获取更多的训练数据;2)如何处理这些新生成的训练数据.使用深度卷积生成对抗网络来生成额外的无标签行人图片,并采用标签平滑正则化来处理这些新生成的无标签行人图片.为了进一步提升行人重识别准确度,提出了一种新的无监督重排序框架.此框架既不需要为每组图像对重新计算新的排序列表,也不需要任何人工交互或标签信息.在Market-1501,CUHK03和DukeMTMC-reID数据集上的实验验证了所提方法的有效性. 展开更多
关键词 行人重识别 深度卷积生成对抗网络 重排序 标签平滑正则化 无监督
下载PDF
深度卷积生成对抗网络结构 被引量:6
17
作者 柯研 王希龙 郑钰辉 《电子技术与软件工程》 2018年第24期5-6,共2页
近年来,随着深度学习的火热发展,以深度卷积神经网络为代表的监督学习已经在计算机视觉等领域上发挥出了巨大的作用,然而用深度学习去解决无监督学习受到的关注却比较少,直道有人将卷积神经网络引入到生成式模型上,提出了卷积神经网络... 近年来,随着深度学习的火热发展,以深度卷积神经网络为代表的监督学习已经在计算机视觉等领域上发挥出了巨大的作用,然而用深度学习去解决无监督学习受到的关注却比较少,直道有人将卷积神经网络引入到生成式模型上,提出了卷积神经网络与生成对抗网络相结合的深度卷积生成对抗网络。卷积神经网络的加入使得其具有了一定的结构性约束,与传统机器学习算法相比在无监督学习的方向上展现出了更加强大的性能,拥有更好的生成效果,特别是在图像生成方面,通过合理的训练甚至可以达到以假乱真的效果。本文主要就是介绍这样一种无监督的深度神经网络——深度卷积生成对抗网络。 展开更多
关键词 深度学习 深度卷积生成对抗网络 无监督学习
下载PDF
基于深度卷积生成对抗网络的航拍图像去厚云方法 被引量:8
18
作者 李从利 张思雨 +1 位作者 韦哲 薛松 《兵工学报》 EI CAS CSCD 北大核心 2019年第7期1434-1442,共9页
针对航空图像中厚云去除的难题,提出一种基于深度卷积生成对抗网络的航拍图像去厚云方法。将图像中被云遮挡的区域看作图像修复问题中的缺失部分,利用卷积神经网络的对抗学习补偿缺失信息。设计了包括生成器-鉴别器的深度卷积生成对抗... 针对航空图像中厚云去除的难题,提出一种基于深度卷积生成对抗网络的航拍图像去厚云方法。将图像中被云遮挡的区域看作图像修复问题中的缺失部分,利用卷积神经网络的对抗学习补偿缺失信息。设计了包括生成器-鉴别器的深度卷积生成对抗网络模型。生成器采用编码器-解码器结构,构建了包含重建损失、对抗损失和总变差损失的联合损失函数,不断训练以生成云区的预测图像;鉴别器衡量生成图像的真实性,以对抗损失作为损失函数。通过不断迭代联合优化生成器和鉴别器,以使网络预测性能提高。引入泊松图像编辑平滑边界,以降低颜色差异和边界伪迹的影响。在模拟含云图像与真实含云图像上实验结果表明,所提出方法的去云效果在峰值信噪比、结构相似性、自然图像无参考质量评价算法及其改进算法指标优于经典方法,更符合人眼主观感受,且具有较小的运算复杂度。 展开更多
关键词 航拍图像 厚云去除 深度卷积生成对抗网络 泊松图像编辑
下载PDF
基于改进深度卷积生成对抗网络的入侵检测方法 被引量:14
19
作者 杨锦溦 杨宇 +1 位作者 姚铖鹏 尹坤 《科学技术与工程》 北大核心 2022年第8期3209-3215,共7页
针对入侵检测系统因采用的网络攻击样本具有不平衡性而导致检测结果出现较大偏差的问题,提出一种将改进后的深度卷积生成对抗网络(deep convolution generation adversarial network,DCGAN)与深度神经网络(deep neural network,DNN)相... 针对入侵检测系统因采用的网络攻击样本具有不平衡性而导致检测结果出现较大偏差的问题,提出一种将改进后的深度卷积生成对抗网络(deep convolution generation adversarial network,DCGAN)与深度神经网络(deep neural network,DNN)相结合的入侵检测模型(DCGAN-DNN),深度卷积生成对抗网络能够通过学习已知攻击样本数据的内在特征分布生成新的攻击样本,并对深度卷积生成对抗网络中生成网络所用的线性整流(rectified linear unit,ReLU)激活函数作出改进,改善了均值偏移和神经元坏死的问题,提升了训练稳定性。使用CIC-IDS-2017数据集作为实验样本对模型进行评估,与传统的过采样方法相比DCGAN-DNN入侵检测模型对于未知攻击和少数攻击类型具有较高检测率。 展开更多
关键词 网络安全态势感知 入侵检测 深度卷积生成对抗网络(DCGAN) 深度神经网络(DNN)
下载PDF
多分类深度卷积生成对抗网络的皮带撕裂检测 被引量:5
20
作者 孟晓娟 张月琴 +1 位作者 郝晓丽 吕进来 《计算机工程与应用》 CSCD 北大核心 2021年第16期269-275,共7页
皮带撕裂是皮带机出现的最常见故障之一,直接影响皮带机的安全稳定运行。针对现有的方法大多仅对一种破损类型进行检测的情况,设计了一种基于双时间尺度的多分类深度卷积生成对抗网络的皮带撕裂检测方法。利用CCD相机捕获皮带表面图像,... 皮带撕裂是皮带机出现的最常见故障之一,直接影响皮带机的安全稳定运行。针对现有的方法大多仅对一种破损类型进行检测的情况,设计了一种基于双时间尺度的多分类深度卷积生成对抗网络的皮带撕裂检测方法。利用CCD相机捕获皮带表面图像,并经数据传输子系统将图像传送到决策子系统;在决策子系统的处理模块,通过去掉生成器的批量归一化操作,由多分类深度卷积生成对抗网络快速得到破损位置和类型;引入双时间尺度更新规则使得模型更快地收敛。实验结果表明,在MS COCO数据集上,多类别平均精确率为95.7%;在皮带图像数据集上,多类别平均精确率为96.9%。 展开更多
关键词 皮带机 双时间尺度更新规则 多分类 深度卷积生成对抗网络 皮带撕裂检测
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部