期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于深度典型相关性分析的跨媒体语义检索 被引量:2
1
作者 王述 史忠植 《中国科学技术大学学报》 CAS CSCD 北大核心 2018年第4期322-330,共9页
基于典型相关性分析的跨媒体检索是一种将不同媒体特征通过相关性分析映射到同构的最大相关子空间,并在子空间中完成跨媒体数据间的相似性比较和检索的方法.典型相关性分析(canonical correlation analysis,CCA)是一种线性模型,并不能... 基于典型相关性分析的跨媒体检索是一种将不同媒体特征通过相关性分析映射到同构的最大相关子空间,并在子空间中完成跨媒体数据间的相似性比较和检索的方法.典型相关性分析(canonical correlation analysis,CCA)是一种线性模型,并不能很好地挖掘跨媒体数据中的复杂相关关系.为此针对深度典型相关性分析(deep CCA,DCCA)的结构进行改进,使用隐含狄利克雷分布(latent Dirichlet allocation,LDA)发现文本语义信息并学习语义映射,提出了跨媒体深度相关性学习模型(cross-media correlation learning with deep canonical correlation analysis,CMC-DCCA)以及跨媒体语义相关性检索方法(cross-media semantic correlation retrieval,CMSCR).在维基百科文本图像数据集上的实验证明,CMC-DCCA模型能够较好地挖掘跨媒体数据中的复杂相关关系,CMSCR在跨媒体检索中具有较好的性能. 展开更多
关键词 典型相关性分析 深度典型相关性分析 语义映射 跨媒体检索
下载PDF
琼东南盆地地壳伸展深度依赖性及其动力学意义 被引量:22
2
作者 张中杰 刘一峰 +2 位作者 张素芳 范蔚茗 陈林 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2010年第1期57-66,共10页
地壳或岩石圈尺度内伸展因子随深度变化特征对于理解岩石圈演化有重要的指示意义.我们利用南海北部大陆边缘琼东南盆地区深反射地震剖面的地壳分层模型,计算了沿剖面上地壳与全地壳的伸展因子.结果表明:琼东南盆地区具有明显的地壳尺度... 地壳或岩石圈尺度内伸展因子随深度变化特征对于理解岩石圈演化有重要的指示意义.我们利用南海北部大陆边缘琼东南盆地区深反射地震剖面的地壳分层模型,计算了沿剖面上地壳与全地壳的伸展因子.结果表明:琼东南盆地区具有明显的地壳尺度内伸展的深度相关性(上地壳尺度伸展因子变化范围为1.0~2.0,全地壳尺度的伸展因子变化范围为1.2~2.5);琼东南盆地各构造单元内的上地壳与全地壳伸展具有明显的非均一性(长昌凹陷上地壳尺度伸展最大,乐东陵水凹陷其次,松南—宝岛凹陷最小;长昌凹陷和松南宝岛凹陷的地壳尺度伸展因子较乐东陵水凹陷大)与各向异性(南东北西剖面较之北东南西向剖面地壳伸展因子大).这些结果预示着琼东南盆地区地壳伸展优势方向为北西向,盆地区东四部的伸展过程或伸展机制可能差异较大拟或存在太平洋岩石圈俯冲角空间差异或地幔岩浆产出时空差异.结合研究区相关研究成果,推断地壳伸展因子的深度相关性可能是共轭大陆边缘低角度拆离控制的简单剪切系统内伴随地幔挤出的动力学现象. 展开更多
关键词 南海北部大陆边缘 地壳伸展 深度相关性 简单剪切 低角度拆离
下载PDF
Effects of weld penetration on tensile properties of 2219 aluminum alloy TIG-welded joints 被引量:6
3
作者 Deng-kui ZHANG Yue ZHAO +7 位作者 Ming-ye DONG Guo-qing WANG Ai-ping WU Ji-guo SHAN Dan-yang MENG Xian-li LIU Jian-ling SONG Zhong-ping ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第6期1161-1168,共8页
Numerical simulation and experimental methods were used to investigate the effects of weld penetration on tensile properties of 2219 aluminum alloy tungsten inert gas(TIG)welded joints.The results show that when other... Numerical simulation and experimental methods were used to investigate the effects of weld penetration on tensile properties of 2219 aluminum alloy tungsten inert gas(TIG)welded joints.The results show that when other geometric parameters are consistent,within a certain range,the deeper the weld penetration of the capping weld is,the lower the tensile strength of the j oint is.The deeper weld penetration of the capping weld can cause the more concentrated stress at the weld toe and the joint is more likely to crack accordingly.Based on necessary assumptions,a model for analyzing the mathematical relation between the weld penetration of the capping weld and the tensile strength of the joint was proposed to validate the experimental results. The decrease of weld penetration of capping weld can be controlled by decreasing welding current,helium content or increasing welding voltage. 展开更多
关键词 2219-C10S aluminum alloy weld penetration tensile strength numerical simulation CORRELATION
下载PDF
Research on red tide occurrence forecast method based on deep learning
4
作者 YU Xuan SHI Suixiang +2 位作者 XU Ling-yu YANG Fanlin WANG Lei 《Marine Science Bulletin》 2021年第2期36-56,共21页
As a marine disaster,red tides have a serious impact on marine fisheries,ecology,economy,human production and life.Red tides have been widely concerned by researchers for a long time.However,due to its complex formati... As a marine disaster,red tides have a serious impact on marine fisheries,ecology,economy,human production and life.Red tides have been widely concerned by researchers for a long time.However,due to its complex formation mechanism,red tide forecasting is extremely challenging.Aiming at addressing problem of red tide forecasting,this paper collects the marine monitoring data before and after the occurrence of red tide in Xiamen sea area,and analyzes the correlation between multiple environmental factors and the red tide occurrence by combining the methods of Pearson correlation coefficient,Scatter matrix,and multiple correlation coefficient.The fusion method of LSTM and CNN based on deep learning are applied to mine the temporal dependence of environmental factors and find the local features of sequence data,then predict the occurrence of red tides.In the Xiamen No.1 and Xiamen No.2 datasets,the RMSE and MAE errors of this method are reaching 0.5218 and 0.5043,respectively.The forecast probability of red tide occurrence was further determined through the collaborative comparison model.The final forecast accuracy of the two datasets is 67.58%and 63.49%,respectively.This study provides exploratory experience for the analysis and forecasting of red tides,which proves the feasibility of applying deep learning methods to red tide forecasting. 展开更多
关键词 deep learning neural network red tide correlation analysis forecasting
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部