期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
深度神经模糊系统算法及其回归应用 被引量:8
1
作者 赵文迪 陈德旺 +1 位作者 卓永强 黄允浒 《自动化学报》 EI CSCD 北大核心 2020年第11期2350-2358,共9页
深度神经网络是人工智能的热点,可以很好处理高维大数据,却有可解释性差的不足.通过IF-THEN规则构建的模糊系统,具有可解释性强的优点,但在处理高维大数据时会遇到“维数灾难”问题.本文提出一种基于ANFIS(Adaptive network based fuzzy... 深度神经网络是人工智能的热点,可以很好处理高维大数据,却有可解释性差的不足.通过IF-THEN规则构建的模糊系统,具有可解释性强的优点,但在处理高维大数据时会遇到“维数灾难”问题.本文提出一种基于ANFIS(Adaptive network based fuzzy inference system)的深度神经模糊系统(Deep neural fuzzy system,DNFS)及两种基于分块和分层的启发式实现算法:DNFS1和DNFS2.通过四个面向回归应用的数据集的测试,我们发现:1)采用分块、分层学习的DNFS在准确度与可解释性上优于BP、RBF、GRNN等传统浅层神经网络算法,也优于LSTM和DBN等深度神经网络算法;2)在低维问题中,DNFS1具有一定优势;3)在面对高维问题时,DNFS2表现更为突出.本文的研究结果表明DNFS是一种新型深度学习方法,不仅可解释性好,而且能有效解决处理高维数据时模糊规则数目爆炸的问题,具有很好的发展前景. 展开更多
关键词 高维大数据 深度神经模糊系统 自适应神经模糊系统 分层结构 可解释性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部