期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于网络压缩与切割的深度模型边云协同加速机制研究
被引量:
2
1
作者
王诺
李丽颖
+1 位作者
钱栋炜
魏同权
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2021年第6期112-123,共12页
人工智能(Artificial Intelligence,AI)的先进技术已被广泛应用于实时地处理大量数据,以期实现快速响应.但是,部署基于AI的各种应用程序的常规方法带来了巨大的计算和通信开销.为了解决这一问题,提出了一种基于网络压缩与切割技术的深...
人工智能(Artificial Intelligence,AI)的先进技术已被广泛应用于实时地处理大量数据,以期实现快速响应.但是,部署基于AI的各种应用程序的常规方法带来了巨大的计算和通信开销.为了解决这一问题,提出了一种基于网络压缩与切割技术的深度模型边云协同加速机制,该技术可以压缩和划分深度神经网络(Deep Neural Networks,DNN)模型,以边云协同的形式在实际应用中实现人工智能模型的快速响应.首先压缩神经网络,以降低神经网络所需要的运行时延,并生成可用作候选分割点的新层,然后训练预测模型以找到最佳分割点,并将压缩的神经网络模型分为两部分.将所获得的两部分分别部署在设备和云端服务器中,这两个部分可以协同地将总延迟降至最低.实验结果表明,与4种基准测试方法相比,本文所提出的方案可以将深度模型的总延迟至少降低70%.
展开更多
关键词
边云协同
深度
神经网络
压缩
深度神经网络切割
下载PDF
职称材料
题名
基于网络压缩与切割的深度模型边云协同加速机制研究
被引量:
2
1
作者
王诺
李丽颖
钱栋炜
魏同权
机构
华东师范大学计算机科学与技术学院
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2021年第6期112-123,共12页
文摘
人工智能(Artificial Intelligence,AI)的先进技术已被广泛应用于实时地处理大量数据,以期实现快速响应.但是,部署基于AI的各种应用程序的常规方法带来了巨大的计算和通信开销.为了解决这一问题,提出了一种基于网络压缩与切割技术的深度模型边云协同加速机制,该技术可以压缩和划分深度神经网络(Deep Neural Networks,DNN)模型,以边云协同的形式在实际应用中实现人工智能模型的快速响应.首先压缩神经网络,以降低神经网络所需要的运行时延,并生成可用作候选分割点的新层,然后训练预测模型以找到最佳分割点,并将压缩的神经网络模型分为两部分.将所获得的两部分分别部署在设备和云端服务器中,这两个部分可以协同地将总延迟降至最低.实验结果表明,与4种基准测试方法相比,本文所提出的方案可以将深度模型的总延迟至少降低70%.
关键词
边云协同
深度
神经网络
压缩
深度神经网络切割
Keywords
Edge-Cloud collaboration
DNN compression
DNN partitioning
分类号
TP393 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于网络压缩与切割的深度模型边云协同加速机制研究
王诺
李丽颖
钱栋炜
魏同权
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2021
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部