期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于多视图深度采样的自然场景三维重建 被引量:6
1
作者 姜翰青 赵长飞 +2 位作者 章国锋 王慧燕 鲍虎军 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第10期1805-1815,共11页
自然场景的多视图三维重建一直是计算机视觉领域的基本问题,有着广泛的应用.随着深度获取设备的日益普及,如何有效地利用多视点的深度图信息重建场景的三维模型已成为一个重要的研究课题.为了自动剔除输入深度图中的错误深度信息,恢复... 自然场景的多视图三维重建一直是计算机视觉领域的基本问题,有着广泛的应用.随着深度获取设备的日益普及,如何有效地利用多视点的深度图信息重建场景的三维模型已成为一个重要的研究课题.为了自动剔除输入深度图中的错误深度信息,恢复高质量的场景模型,提出一种多视图深度采样方法来实现自然场景的三维几何重建.首先对深度图进行非均匀采样以获得每帧的三维点集,并剔除部分深度误差较大的三维点;然后通过深度置信度估计的方法对多帧的三维点集进行融合并剔除多帧之间重复冗余的三维点,从而获得整体场景的三维点云;最后基于融合后的三维点云生成完整的场景几何模型.一系列复杂的自然场景实例证明了该方法的正确性和鲁棒性,其不仅能够重建小规模的物体,也同样适用于大规模场景的三维几何重建. 展开更多
关键词 非均匀采样 深度置信度 多视图融合
下载PDF
分层联合双边滤波的深度图修复算法研究 被引量:7
2
作者 万琴 朱晓林 +1 位作者 陈国泉 肖岳平 《计算机工程与应用》 CSCD 北大核心 2021年第6期184-190,共7页
三维场景建模及三维多目标检测识别等研究中需要获取高精度、高分辨率深度图,针对RGB-D传感器提供的深度信息存在分辨率低、深度值缺失和噪声干扰等问题,提出一种基于深度置信度的分层联合双边滤波深度图修复算法。基于深度信息获取存... 三维场景建模及三维多目标检测识别等研究中需要获取高精度、高分辨率深度图,针对RGB-D传感器提供的深度信息存在分辨率低、深度值缺失和噪声干扰等问题,提出一种基于深度置信度的分层联合双边滤波深度图修复算法。基于深度信息获取存在的问题提出相应的深度退化模型,采用深度置信度测量对深度像素进行置信度分类,根据深度置信度确定滤波器窗口权重值,利用提出的分层联合双边滤波算法在待修复区域完成深度图修复。采用Middlebury标准数据库和自采数据库进行定性对比实验和定量结果分析表明,该算法对深度图修复后边缘更加清晰合理,消除了边缘模糊和纹理伪像,有效提高了三维深度图修复的精确度。 展开更多
关键词 RGB-D 深度修复 深度置信度 分层联合双边滤波
下载PDF
Nonlinear inversion for magnetotelluric sounding based on deep belief network 被引量:8
3
作者 WANG He LIU Wei XI Zhen-zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2482-2494,共13页
To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network ... To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network inputs are the apparent resistivities of known models,and the outputs are the model parameters.The optimal network structure is achieved by determining the numbers of hidden layers and network nodes.Secondly,the learning process of the DBN is implemented to obtain the optimal solution of network connection weights for known geoelectric models.Finally,the trained DBN is verified through inversion tests,in which the network inputs are the apparent resistivities of unknown models,and the outputs are the corresponding model parameters.The experiment results show that the DBN can make full use of the global searching capability of the restricted Boltzmann machine(RBM)unsupervised learning and the local optimization of the back propagation(BP)neural network supervised learning.Comparing to the traditional neural network inversion,the calculation accuracy and stability of the DBN for MT data inversion are improved significantly.And the tests on synthetic data reveal that this method can be applied to MT data inversion and achieve good results compared with the least-square regularization inversion. 展开更多
关键词 MAGNETOTELLURICS nonlinear inversion deep learning deep belief network
下载PDF
Prediction Model of Aircraft Icing Based on Deep Neural Network 被引量:12
4
作者 YI Xian WANG Qiang +1 位作者 CHAI Congcong GUO Lei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期535-544,共10页
Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed un... Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed under different icing conditions.Due to the complexity of the icing process,the rapid assessment of ice shape remains an important challenge.In this paper,an efficient prediction model of aircraft icing is established based on the deep belief network(DBN)and the stacked auto-encoder(SAE),which are all deep neural networks.The detailed network structures are designed and then the networks are trained according to the samples obtained by the icing numerical computation.After that the model is applied on the ice shape evaluation of NACA0012 airfoil.The results show that the model can accurately capture the nonlinear behavior of aircraft icing and thus make an excellent ice shape prediction.The model provides an important tool for aircraft icing analysis. 展开更多
关键词 aircraft icing ice shape prediction deep neural network deep belief network stacked auto-encoder
下载PDF
Tandem hidden Markov models using deep belief networks for offline handwriting recognition 被引量:2
5
作者 Partha Pratim ROY Guoqiang ZHONG Mohamed CHERIET 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第7期978-988,共11页
Unconstrained offiine handwriting recognition is a challenging task in the areas of document analysis and pattern recognition. In recent years, to sufficiently exploit the supervisory information hidden in document im... Unconstrained offiine handwriting recognition is a challenging task in the areas of document analysis and pattern recognition. In recent years, to sufficiently exploit the supervisory information hidden in document images, much effort has been made to integrate multi-layer perceptrons (MLPs) in either a hybrid or a tandem fashion into hidden Markov models (HMMs). However, due to the weak learnability of MLPs, the learnt features are not necessarily optimal for subsequent recognition tasks. In this paper, we propose a deep architecture-based tandem approach for unconstrained offiine handwriting recognition. In the proposed model, deep belief networks arc adopted to learn the compact representations of sequential data, while HMMs are applied for (sub-)word recognition. We evaluate the proposed model on two publicly available datasets, i.e., RIMES and IFN/ENIT, which are based on Latin and Arabic languages respectively, and one dataset collected by ourselves called Devanagari (all Indian script). Extensive experiments show the advantage of the proposed model, especially over the MLP-HMMs taudem approaches. 展开更多
关键词 Handwriting recognition Hidden Markov models Deep learning Deep belief networks Tandemapproach
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部