期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
融合元数据及attention机制的深度联合学习推荐 被引量:3
1
作者 张全贵 李志强 +1 位作者 张新新 曹志强 《计算机应用研究》 CSCD 北大核心 2019年第11期3290-3293,共4页
融合元数据的协同过滤推荐即混合推荐算法是目前推荐系统领域研究的热点,能一定程度地解决数据稀疏及冷启动等问题。但融合元数据现有的建模方法大多数建立于用户/项目属性权重相同的情景下,以至于用户项目间重点关系表达不显著,难以获... 融合元数据的协同过滤推荐即混合推荐算法是目前推荐系统领域研究的热点,能一定程度地解决数据稀疏及冷启动等问题。但融合元数据现有的建模方法大多数建立于用户/项目属性权重相同的情景下,以至于用户项目间重点关系表达不显著,难以获得较好的推荐性能。针对上述问题,提出一种融合元数据及attention机制的深度联合学习推荐方法。它利用双深度网络联合学习,其中一个网络基于隐反馈数据实现矩阵非线性分解以学习用户/项目个性化关系,另一个利用attention机制自动捕捉用户/项目关键属性对推荐工作的影响,通过赋予不同属性权重凸显的用户偏好关系建模辅以扩展模型。实验结果表明,所提推荐算法在MovieLens 100K和MovieLens 1M两个公开数据集上均表现出较为优越的推荐性能。 展开更多
关键词 元数据 属性权重 attention机制 深度联合学习 非线性分解
下载PDF
融合元数据及隐式反馈信息的多层次联合学习推荐方法 被引量:5
2
作者 张全贵 李志强 +1 位作者 蔡丰 王星 《计算机应用研究》 CSCD 北大核心 2018年第12期3635-3639,共5页
针对隐式数据单纯利用隐反馈信息往往难以获取较好推荐性能的问题,提出一种融合元数据及隐式反馈信息的多层次深度联合学习(multi-level deep joint learning,MDJL)推荐方法。它利用双深度神经网络共同学习,其中一个网络利用隐式反馈学... 针对隐式数据单纯利用隐反馈信息往往难以获取较好推荐性能的问题,提出一种融合元数据及隐式反馈信息的多层次深度联合学习(multi-level deep joint learning,MDJL)推荐方法。它利用双深度神经网络共同学习,其中一个网络利用隐式反馈学习用户及项目个体个性化关系,另一个网络利用元数据学习高层次群体共性化关系,从而有效地表达用户偏好,使MDJL框架在个体及群体因素间达到平衡。最后,MDJL推荐算法在Movie Lens 100K和MovieLens 1M两个公开数据集上进行实验评估。结果表明,该算法比其他基线方法表现出了更为优越的推荐性能。 展开更多
关键词 元数据 隐式反馈 多层次深度联合学习 个体个性化 群体共性化
下载PDF
面向物业投诉的字符级短文本分类模型 被引量:1
3
作者 朱明 陈一飞 《大众科技》 2022年第4期31-35,85,共6页
文章针对物业投诉短文本人工输入内容复杂、提取特征较困难等问题,提出一种基于字符级文本表示的CNBG深度学习联合模型。该模型首先将物业投诉工单文本进行字符向量表示,然后分别输入到卷积神经网络CNN和双向门控循环单元BiGRU提取特征... 文章针对物业投诉短文本人工输入内容复杂、提取特征较困难等问题,提出一种基于字符级文本表示的CNBG深度学习联合模型。该模型首先将物业投诉工单文本进行字符向量表示,然后分别输入到卷积神经网络CNN和双向门控循环单元BiGRU提取特征,并将它们提取到的特征进行融合,最后实现文本分类。实验结果表明,基于字符级CNBG深度学习联合模型在物业投诉工单分类任务上得到的比其它基准模型平均高15%,在物业投诉工单数据集上能够取得更好的效果。 展开更多
关键词 自然语言处理 文本分类 字符级文本表示 CNBG深度学习联合模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部