期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SAE的深度过程神经网络模式识别与预测 被引量:1
1
作者 祁威 许少华 《软件导刊》 2018年第5期22-25,30,共5页
非线性复杂时变信号模式分类是信号处理和人工智能研究领域的重要课题。将稀疏自动编码器(SAE)与过程神经网络(PNN)栈式叠加,构建了一种深度过程神经网络模型(DPNN)。在传统深度神经网络无监督逐层初始化与梯度下降相结合的算法基础上,... 非线性复杂时变信号模式分类是信号处理和人工智能研究领域的重要课题。将稀疏自动编码器(SAE)与过程神经网络(PNN)栈式叠加,构建了一种深度过程神经网络模型(DPNN)。在传统深度神经网络无监督逐层初始化与梯度下降相结合的算法基础上,通过引入一种时变输入信号和连接权函数,基于一组正交函数基,建立DPNN的综合训练算法。DPNN模型可保持样本特征的多样性,有效提高对信号结构特征的提取能力和不同类别样本特征的区分度。将传统深度神经网络在信息处理机制上扩展为时间域,实现对时变信号直接分类处理,应用于心脑血管疾病的预测分析和处理取得了良好结果。 展开更多
关键词 稀疏自动编码器 过程神经网络 深度过程神经网络 非线性时变信号 模式识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部