期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度估计和特征融合的尺度自适应目标跟踪算法 被引量:4
1
作者 牟琦 张寒 +1 位作者 何志强 李占利 《图学学报》 CSCD 北大核心 2021年第4期563-571,共9页
针对核相关滤波目标跟踪算法(KCF)使用单特征来描述所跟踪的目标,在复杂环境下,目标尺度发生较大变化时,无法准确跟踪目标的问题,提出基于深度估计和特征融合的尺度自适应目标跟踪算法。首先利用深度神经网络估计视频序列中目标的深度,... 针对核相关滤波目标跟踪算法(KCF)使用单特征来描述所跟踪的目标,在复杂环境下,目标尺度发生较大变化时,无法准确跟踪目标的问题,提出基于深度估计和特征融合的尺度自适应目标跟踪算法。首先利用深度神经网络估计视频序列中目标的深度,建立并训练深度-尺度估计模型;在跟踪过程中,融合目标方向梯度直方图(HOG)特征和CN(Color Name)特征训练相关滤波器,利用深度估计网络得到目标深度值,并利用深度-尺度估计模型得到目标的尺度值,从而在目标尺度发生变化时,能够调整目标框大小,实现尺度自适应的目标跟踪算法。实验结果表明,与经典的KCF算法相比,可获得更高的精度,与尺度自适应的判别型尺度空间跟踪(DSST)算法相比,在尺度变化较大时,跟踪速度更快;在环境复杂、目标被遮挡时,鲁棒性更好。 展开更多
关键词 目标跟踪 相关滤波 特征融合 深度估计网络 深度-尺度估计模型 尺度自适应
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部