A 3-D geometrical nonlinear model for the entire lift system of 1000-m sea trial system of China Ocean Mineral Resources R&D Association was established with finite element method.The model was utilized to analyze...A 3-D geometrical nonlinear model for the entire lift system of 1000-m sea trial system of China Ocean Mineral Resources R&D Association was established with finite element method.The model was utilized to analyze the dynamic characteristics of the vertical pipe under the influence of moving velocity,current direction and wave.The simulation results show that the axial stress is dominant on the vertical pipe,its maximum is located at the pipe top,all stresses are much less than the allowable value of the vertical pipe and joint;the heave motion leads to violent fluctuation of the force and stress,but a period of 8 s is not likely to resonate the present pipe;against the current,0.50 m/s is the suggested moving velocity of the ship and miner,while along the current,the moving velocity can be slightly higher than 0.75 m/s.展开更多
A one-dimensional coupled pelagic-benthic box model for the Yellow Sea Cold Water Mass (YSCWM) is developed. The model is divided into three boxes vertically according to the depths of thermocline and euphotic layer. ...A one-dimensional coupled pelagic-benthic box model for the Yellow Sea Cold Water Mass (YSCWM) is developed. The model is divided into three boxes vertically according to the depths of thermocline and euphotic layer. It simulates well the oligotrophic shelf ecosystem of the YSCWM considering effects of nu- trients deposition and microbial loop. Main features of vertical structure of various variables in ecosystem of the YSCWM were captured and seasonal variability of the ecosystem was well reconstructed. Calculation shows that the contribution of microbial loop to the zooplankton can reach up to 60%. Besides, input of inorganic nutrients from atmospheric deposition is an important mechanism of production in upper layer of the YSCWM when stratified.展开更多
The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite el...The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite element model for two-dimensional dynamic analysis of armored cable is presented. This model accounts for the geometric nonlinearities of large displacement of the armored cable, and effects of axial load and bending stiffness. The governing equations are derived by consistent linearization and finite element discretization of the total weak form of the armored cable system, and solved by the Newmark time integration method. To make the solution procedure avoid falling into the local extreme points, a simple adaptive stepping strategy is proposed. The presented model is validated via actual measured data. Results for dynamic configurations, motion and tension of both ends of the armored cable, and resonance-zone are presented for two numerical cases, including the dynamic analysis under the case of only ship heave motion and the case of joint action of ship heave motion and ocean current. The dynamics analysis can provide important reference for the design or product selection of the armored cable in a deep-sea ROV system so as to improve the safety of its marine operation under the sea state of 4 or above.展开更多
Studying the relationship between wave steepness and wave age is important for describing wind wave growth with energy balance equation of significant waves. After invoking the dispersion rela- tion of surface gravity...Studying the relationship between wave steepness and wave age is important for describing wind wave growth with energy balance equation of significant waves. After invoking the dispersion rela- tion of surface gravity wave in deep water, a new relationship between wave steepness and wave age is revealed based on the “3/2-power law” (Toba, 1972), in which wave steepness is a function of wave age with a drag coefficient as a parameter. With a given wave age, a larger drag coefficient would lead to larger wave steepness. This could be interpreted as the result of interaction between wind and waves. Comparing with previous relationships, the newly proposed one is more consistent with observational data in field and laboratory.展开更多
Two deep-sea moorings were deployed respectively in the east area and the west area of Chinese Pioneer Area (CPA) in the tropic east Pacific to monitor the regional deep-sea dynamics below 600 meters above bottom (mab...Two deep-sea moorings were deployed respectively in the east area and the west area of Chinese Pioneer Area (CPA) in the tropic east Pacific to monitor the regional deep-sea dynamics below 600 meters above bottom (mab) from July 1997 to Oct. 1999. Results of statistics, spectral estimate and correlation analysis of the low-passed velocity data show that time scales of low-frequency components of the near-bottom currents are 25~120 days, in which 51-day period dominates the lower band of the frequency domain. Topographic features have obvious effect on low-frequency currents below 50 mab; modulations of the bot-tom-intensified sheared mean flow to the low-frequency currents are the dynamic mechanism of the frequency shift that occurs in both the east-area and the west-area.展开更多
基金Project (DY105-03-02-02) supported by the Deep-Ocean Technology Development Item of China
文摘A 3-D geometrical nonlinear model for the entire lift system of 1000-m sea trial system of China Ocean Mineral Resources R&D Association was established with finite element method.The model was utilized to analyze the dynamic characteristics of the vertical pipe under the influence of moving velocity,current direction and wave.The simulation results show that the axial stress is dominant on the vertical pipe,its maximum is located at the pipe top,all stresses are much less than the allowable value of the vertical pipe and joint;the heave motion leads to violent fluctuation of the force and stress,but a period of 8 s is not likely to resonate the present pipe;against the current,0.50 m/s is the suggested moving velocity of the ship and miner,while along the current,the moving velocity can be slightly higher than 0.75 m/s.
基金This work is supported by Major State Basic Research DevelopmentProgram of China (973 Program, G19990437), China International Co-operation Program (No. 2001CB711004) and NSFC (No. 40476045)
文摘A one-dimensional coupled pelagic-benthic box model for the Yellow Sea Cold Water Mass (YSCWM) is developed. The model is divided into three boxes vertically according to the depths of thermocline and euphotic layer. It simulates well the oligotrophic shelf ecosystem of the YSCWM considering effects of nu- trients deposition and microbial loop. Main features of vertical structure of various variables in ecosystem of the YSCWM were captured and seasonal variability of the ecosystem was well reconstructed. Calculation shows that the contribution of microbial loop to the zooplankton can reach up to 60%. Besides, input of inorganic nutrients from atmospheric deposition is an important mechanism of production in upper layer of the YSCWM when stratified.
基金Project(2008AA09Z201)supported by the National High Technology Research and Development Program of China
文摘The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite element model for two-dimensional dynamic analysis of armored cable is presented. This model accounts for the geometric nonlinearities of large displacement of the armored cable, and effects of axial load and bending stiffness. The governing equations are derived by consistent linearization and finite element discretization of the total weak form of the armored cable system, and solved by the Newmark time integration method. To make the solution procedure avoid falling into the local extreme points, a simple adaptive stepping strategy is proposed. The presented model is validated via actual measured data. Results for dynamic configurations, motion and tension of both ends of the armored cable, and resonance-zone are presented for two numerical cases, including the dynamic analysis under the case of only ship heave motion and the case of joint action of ship heave motion and ocean current. The dynamics analysis can provide important reference for the design or product selection of the armored cable in a deep-sea ROV system so as to improve the safety of its marine operation under the sea state of 4 or above.
基金Supported by Specialized Research Fund for Doctoral Program of Higher Education (No.20040423002)by National Natural Science Foundation of China (No.40476008)
文摘Studying the relationship between wave steepness and wave age is important for describing wind wave growth with energy balance equation of significant waves. After invoking the dispersion rela- tion of surface gravity wave in deep water, a new relationship between wave steepness and wave age is revealed based on the “3/2-power law” (Toba, 1972), in which wave steepness is a function of wave age with a drag coefficient as a parameter. With a given wave age, a larger drag coefficient would lead to larger wave steepness. This could be interpreted as the result of interaction between wind and waves. Comparing with previous relationships, the newly proposed one is more consistent with observational data in field and laboratory.
文摘Two deep-sea moorings were deployed respectively in the east area and the west area of Chinese Pioneer Area (CPA) in the tropic east Pacific to monitor the regional deep-sea dynamics below 600 meters above bottom (mab) from July 1997 to Oct. 1999. Results of statistics, spectral estimate and correlation analysis of the low-passed velocity data show that time scales of low-frequency components of the near-bottom currents are 25~120 days, in which 51-day period dominates the lower band of the frequency domain. Topographic features have obvious effect on low-frequency currents below 50 mab; modulations of the bot-tom-intensified sheared mean flow to the low-frequency currents are the dynamic mechanism of the frequency shift that occurs in both the east-area and the west-area.