Remote sensing technique, replacing conventional sonar bathymetry technique, has become an effective complementary method of mapping submarine terrain where special conditions make the sonar technique difficult to be ...Remote sensing technique, replacing conventional sonar bathymetry technique, has become an effective complementary method of mapping submarine terrain where special conditions make the sonar technique difficult to be carried out. At the same time, as one kind of data set, multispectral remote sensing data has the disadvantage of being influenced by the variable bottom types in shallow seawater, when it is applied in bathymetry. This paper puts forward a new method to extract water depth information from multispectral data, considering the bottom classification and the true water depth accuracy. That is the Principal Component Analysis (PCA) technique based on the bottom classification. By the least square regression with significance, the experiment near Qingdao City has obtained more satisfactory bathymetry accuracy than that of the traditional single-band method, with the mean absolute error about 2.57m.展开更多
High-resolution bathymetric side-scan sonar(BSSS) performs the functions of traditional side-scan sonar, while also providing a depth-sounding function that allows simultaneous measurement of seafloor topography and g...High-resolution bathymetric side-scan sonar(BSSS) performs the functions of traditional side-scan sonar, while also providing a depth-sounding function that allows simultaneous measurement of seafloor topography and geomorphology. Submarine microtopography and microgeomorphology detection ability and advanced underwater acoustic digital communication are important technical capabilities of the Jiaolong manned submersible. High resolution BSSS achieved accurate detection of seafloor topography and geomorphology at a depth of 7000 m, and successful mapping of local microtopography and microgeomorphology in the Mariana Trench.展开更多
基金Foundation item: Under the auspices of Scientific Foundation Research Project of the Ministry of Science and Technology and Chinese Academy of Surveying and Mapping (No. F0610)
文摘Remote sensing technique, replacing conventional sonar bathymetry technique, has become an effective complementary method of mapping submarine terrain where special conditions make the sonar technique difficult to be carried out. At the same time, as one kind of data set, multispectral remote sensing data has the disadvantage of being influenced by the variable bottom types in shallow seawater, when it is applied in bathymetry. This paper puts forward a new method to extract water depth information from multispectral data, considering the bottom classification and the true water depth accuracy. That is the Principal Component Analysis (PCA) technique based on the bottom classification. By the least square regression with significance, the experiment near Qingdao City has obtained more satisfactory bathymetry accuracy than that of the traditional single-band method, with the mean absolute error about 2.57m.
基金supported by the National Key R&D Program of China (Grant No. 2017YFC0305700)the Qingdao National Laboratory for Marine Science and Technology (Grant No. QNLM2016ORP0406)+4 种基金the National Natural Science Foundation of China (Grant No. 41641049)the Taishan Scholar Project Funding (Grant No. TSPD20161007)the Shandong Provincial Natural Science Foundation (Grant No. ZR2015EM005)the Shandong Provincial Key R&D Program (Grant No. 2016GSF115006)the Qingdao Independent Innovation Project (Grant No. 15-9-1-90-JCH)
文摘High-resolution bathymetric side-scan sonar(BSSS) performs the functions of traditional side-scan sonar, while also providing a depth-sounding function that allows simultaneous measurement of seafloor topography and geomorphology. Submarine microtopography and microgeomorphology detection ability and advanced underwater acoustic digital communication are important technical capabilities of the Jiaolong manned submersible. High resolution BSSS achieved accurate detection of seafloor topography and geomorphology at a depth of 7000 m, and successful mapping of local microtopography and microgeomorphology in the Mariana Trench.