Four climatologies on a monthly scale (January, April, May and November) of chlorophyll a within the South China Sea (SCS) were calculated using a Coastal Zone Color Scanner (CZCS) (1979-1983) and the Sea-viewing Wide...Four climatologies on a monthly scale (January, April, May and November) of chlorophyll a within the South China Sea (SCS) were calculated using a Coastal Zone Color Scanner (CZCS) (1979-1983) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (1998-2002). We analyzed decadal variability of chlorophyll a by comparing the products of the two observation periods. The relationships of variability in chlorophyll a with sea surface wind speed (SSW), sea surface temperature (SST), wind stress (WS), and mixed layer depth (MLD) were determined. The results indicate that there is obvious chlorophyll a decadal variability in the SCS. The decadal chlorophyll a presents distinct seasonal variability in characteristics, which may be as a result of various different dynamic processes. The negative chlorophyll a concentration anomaly in January was associated with the warming of SST and a shallower MLD. Generally, there were higher chlorophyll a concentrations in spring during the SeaWiFS period compared with the CZCS period. However, the chlorophyll a concentration exhibits some regional differences during this season, leading to an explanation being difficult. The deepened MLD may have contributed to the positive chlorophyll a concentration anomalies from the northwestern Luzon Island to the northeastern region of Vietnam during April and May. The increases of chlorophyll a concentration in northwestern Borneo during May may be because the stronger SSW and higher WS produce a deeper mixed layer and convective mixing, leading to high levels of nutrient concentrations. The higher chlorophyll a off southeastern Vietnam may be associated with the advective transport of the colder water extending from the Karimata Strait to southeastern Vietnam.展开更多
Formally,use of system identification techniques to estimate the forces acting on the beam may give information on hydrodynamic forces due to vortex-induced vibrations(VIVs),but no results from such attempts for subma...Formally,use of system identification techniques to estimate the forces acting on the beam may give information on hydrodynamic forces due to vortex-induced vibrations(VIVs),but no results from such attempts for submarine pipeline spans have been reported.In this study,a pipe model with a mass ratio(mass/displaced mass) of 2.62 is tested in a current tank.The gap ratios(gap to pipe diameter ratio) at the pipe ends are 2.0,4.0, 6.0 and 8.0.The response of the model is measured using optical fiber strain gauges.A modal approach linked to a finite element method is used to estimate the hydrodynamic forces from measurement.The hydrodynamic force at the dominant response frequency is the major concern,and the lift force and added mass coefficients are calculated.Response calculations are performed using force coefficients from the inverse force analysis and the calculated results are in accordance with the experimental data.展开更多
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (Nos. KZCX1-YW-12-01, KZCX2-YW-Q11-02)the National Natural Science Foundation of China (Nos. 41006111, 40976106)the Project from Guangzhou City for the Pearl River New Star on Science and Technology (No. 2011J2200022)
文摘Four climatologies on a monthly scale (January, April, May and November) of chlorophyll a within the South China Sea (SCS) were calculated using a Coastal Zone Color Scanner (CZCS) (1979-1983) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) (1998-2002). We analyzed decadal variability of chlorophyll a by comparing the products of the two observation periods. The relationships of variability in chlorophyll a with sea surface wind speed (SSW), sea surface temperature (SST), wind stress (WS), and mixed layer depth (MLD) were determined. The results indicate that there is obvious chlorophyll a decadal variability in the SCS. The decadal chlorophyll a presents distinct seasonal variability in characteristics, which may be as a result of various different dynamic processes. The negative chlorophyll a concentration anomaly in January was associated with the warming of SST and a shallower MLD. Generally, there were higher chlorophyll a concentrations in spring during the SeaWiFS period compared with the CZCS period. However, the chlorophyll a concentration exhibits some regional differences during this season, leading to an explanation being difficult. The deepened MLD may have contributed to the positive chlorophyll a concentration anomalies from the northwestern Luzon Island to the northeastern region of Vietnam during April and May. The increases of chlorophyll a concentration in northwestern Borneo during May may be because the stronger SSW and higher WS produce a deeper mixed layer and convective mixing, leading to high levels of nutrient concentrations. The higher chlorophyll a off southeastern Vietnam may be associated with the advective transport of the colder water extending from the Karimata Strait to southeastern Vietnam.
基金the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(No.50921001)the National Natural Science Foundation of China(No.41176072)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department (No.12C0030)the Open Research Fund Program for Hunan Province Key Laboratory of Water, Sediment Sciences & Flood Hazard Prevention (No.2012SS07)
文摘Formally,use of system identification techniques to estimate the forces acting on the beam may give information on hydrodynamic forces due to vortex-induced vibrations(VIVs),but no results from such attempts for submarine pipeline spans have been reported.In this study,a pipe model with a mass ratio(mass/displaced mass) of 2.62 is tested in a current tank.The gap ratios(gap to pipe diameter ratio) at the pipe ends are 2.0,4.0, 6.0 and 8.0.The response of the model is measured using optical fiber strain gauges.A modal approach linked to a finite element method is used to estimate the hydrodynamic forces from measurement.The hydrodynamic force at the dominant response frequency is the major concern,and the lift force and added mass coefficients are calculated.Response calculations are performed using force coefficients from the inverse force analysis and the calculated results are in accordance with the experimental data.