目的针对深潜耐压球壳在真实下潜过程中全局应力场难以直接获取的问题,提出一种基于人工智能的深潜耐压球壳应力场映射算法。方法构建深潜耐压球壳有限元模型,并开展仿真分析。提出深潜耐压球壳监测布点方案,进而利用长短时记忆神经网络...目的针对深潜耐压球壳在真实下潜过程中全局应力场难以直接获取的问题,提出一种基于人工智能的深潜耐压球壳应力场映射算法。方法构建深潜耐压球壳有限元模型,并开展仿真分析。提出深潜耐压球壳监测布点方案,进而利用长短时记忆神经网络(Long-short Term Memory Network,LSTM),将测点应力信息作为输入,将全局应力场信息作为输出,构建深潜耐压球壳应力场映射模型。最后,对不同测点下的映射结果进行分析。结果与模型试验结果相比,仿真误差小于2%。与DNN模型及BP模型相比,映射误差分别下降94.92%与97.76%。结论所提映射算法可在部分测点失效的情况下仍可以保持较高精度。展开更多
文摘目的针对深潜耐压球壳在真实下潜过程中全局应力场难以直接获取的问题,提出一种基于人工智能的深潜耐压球壳应力场映射算法。方法构建深潜耐压球壳有限元模型,并开展仿真分析。提出深潜耐压球壳监测布点方案,进而利用长短时记忆神经网络(Long-short Term Memory Network,LSTM),将测点应力信息作为输入,将全局应力场信息作为输出,构建深潜耐压球壳应力场映射模型。最后,对不同测点下的映射结果进行分析。结果与模型试验结果相比,仿真误差小于2%。与DNN模型及BP模型相比,映射误差分别下降94.92%与97.76%。结论所提映射算法可在部分测点失效的情况下仍可以保持较高精度。