The effect of rolling to a total effective strain of 2 at the liquid nitrogen temperature and subsequent natural and artificial aging on the structure and service properties of the pre-quenched hot-pressed 2024 alumin...The effect of rolling to a total effective strain of 2 at the liquid nitrogen temperature and subsequent natural and artificial aging on the structure and service properties of the pre-quenched hot-pressed 2024 aluminum alloy was investigated.Using optical and electron microscopy,and X-ray analysis,it was found that the cryorolling did not qualitatively change the type of the initial coarse-fibered microstructure,but produced a well-developed nanocell substructure inside fibers.Further aging led to decomposition of the preliminary supersaturated and work-hardened aluminum solid solution and precipitation of strengthening phases in the statically recovered and/or recrystallized matrix.As a result,the rolled and naturally aged alloy demonstrated the yield and ultimate tensile strengths(YS=590 MPa,UTS=640 MPа)much higher than those in the pressed andТ6-heat treated alloy at equal elongation to failure(El^6%).Artificial aging at a temperature less than conventional T6 route could provide the extra alloy strengthening and the unique balance of mechanical properties,involving enhanced strength(YS=610 MPa,UTS=665 MPа)and ductility(El^10%),and good static crack resistance(the specific works for crack formation and growth were 42 and 18 k J/m^2,respectively)and corrosion resistance(the intensity and depth of intercrystalline corrosion were 23%and 50μm,respectively).展开更多
The absorption process of radiative heat in its transmission medium and the effect of ultra-attenuation on the radiative characteristics are analyzed in detail. A method of ultra-attenuation to enhance the radiative c...The absorption process of radiative heat in its transmission medium and the effect of ultra-attenuation on the radiative characteristics are analyzed in detail. A method of ultra-attenuation to enhance the radiative characteristics of the medium is proposed. It is proved that decreasing the particle size of coatings can increase the transmission depth of radiative heat and get higher emissivity and absorptivity both theoretically and practically. Ultra-attenuation and nanocrystallization will bring a brilliant prospect to the development of radiative coatings.展开更多
The change of P+ deep well doping will affect the charge collection of the active and passive devices in nano-technology,thus affecting the propagated single event transient(SET) pulsewidths in circuits.The propagated...The change of P+ deep well doping will affect the charge collection of the active and passive devices in nano-technology,thus affecting the propagated single event transient(SET) pulsewidths in circuits.The propagated SET pulsewidths can be quenched by reducing the doping of P+ deep well in the appropriate range.The study shows that the doping of P+ deep well mainly affects the bipolar amplification component of SET current,and that changing the P+ deep well doping has little effect on NMOS but great effect on PMOS.展开更多
文摘The effect of rolling to a total effective strain of 2 at the liquid nitrogen temperature and subsequent natural and artificial aging on the structure and service properties of the pre-quenched hot-pressed 2024 aluminum alloy was investigated.Using optical and electron microscopy,and X-ray analysis,it was found that the cryorolling did not qualitatively change the type of the initial coarse-fibered microstructure,but produced a well-developed nanocell substructure inside fibers.Further aging led to decomposition of the preliminary supersaturated and work-hardened aluminum solid solution and precipitation of strengthening phases in the statically recovered and/or recrystallized matrix.As a result,the rolled and naturally aged alloy demonstrated the yield and ultimate tensile strengths(YS=590 MPa,UTS=640 MPа)much higher than those in the pressed andТ6-heat treated alloy at equal elongation to failure(El^6%).Artificial aging at a temperature less than conventional T6 route could provide the extra alloy strengthening and the unique balance of mechanical properties,involving enhanced strength(YS=610 MPa,UTS=665 MPа)and ductility(El^10%),and good static crack resistance(the specific works for crack formation and growth were 42 and 18 k J/m^2,respectively)and corrosion resistance(the intensity and depth of intercrystalline corrosion were 23%and 50μm,respectively).
文摘The absorption process of radiative heat in its transmission medium and the effect of ultra-attenuation on the radiative characteristics are analyzed in detail. A method of ultra-attenuation to enhance the radiative characteristics of the medium is proposed. It is proved that decreasing the particle size of coatings can increase the transmission depth of radiative heat and get higher emissivity and absorptivity both theoretically and practically. Ultra-attenuation and nanocrystallization will bring a brilliant prospect to the development of radiative coatings.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60836004, 61006070, and 61076025)
文摘The change of P+ deep well doping will affect the charge collection of the active and passive devices in nano-technology,thus affecting the propagated single event transient(SET) pulsewidths in circuits.The propagated SET pulsewidths can be quenched by reducing the doping of P+ deep well in the appropriate range.The study shows that the doping of P+ deep well mainly affects the bipolar amplification component of SET current,and that changing the P+ deep well doping has little effect on NMOS but great effect on PMOS.