期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于AHPH的中文深网模式匹配方法研究
1
作者 李果 段青玲 +1 位作者 李道亮 肖辉容 《计算机工程与设计》 CSCD 北大核心 2013年第1期293-297,共5页
针对现有中文Deep Web查询接口的模式匹配方法准确度不高、效率较低、自动化不够等问题,提出了一种基于AHPH的中文Deep Web模式匹配方法。该方法通过对属性进行配对后计算各个属性匹配对的相似度,根据一定的规则获取最优匹配。针对属性... 针对现有中文Deep Web查询接口的模式匹配方法准确度不高、效率较低、自动化不够等问题,提出了一种基于AHPH的中文Deep Web模式匹配方法。该方法通过对属性进行配对后计算各个属性匹配对的相似度,根据一定的规则获取最优匹配。针对属性配对的相似度计算,采用基于《知网》(Hownet)的词语相似度计算方法得到属性词语之间的各个相似度,并利用层次分析法(AHP)为属性词汇之间的各个相似度分配权重。实验结果表明,该方法能明显提高模式匹配的精确度和召回率,有效地提高了匹配质量。 展开更多
关键词 深网集成 模式匹配 《知 层次分析法 词语相似度
下载PDF
An enhanced hybrid ensemble deep learning approach for forecasting daily PM_(2.5) 被引量:5
2
作者 LIU Hui DENG Da-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期2074-2083,共10页
PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed ... PM_(2.5) forecasting technology can provide a scientific and effective way to assist environmental governance and protect public health.To forecast PM_(2.5),an enhanced hybrid ensemble deep learning model is proposed in this research.The whole framework of the proposed model can be generalized as follows:the original PM_(2.5) series is decomposed into 8 sub-series with different frequency characteristics by variational mode decomposition(VMD);the long short-term memory(LSTM)network,echo state network(ESN),and temporal convolutional network(TCN)are applied for parallel forecasting for 8 different frequency PM_(2.5) sub-series;the gradient boosting decision tree(GBDT)is applied to assemble and reconstruct the forecasting results of LSTM,ESN and TCN.By comparing the forecasting data of the models over 3 PM_(2.5) series collected from Shenyang,Changsha and Shenzhen,the conclusions can be drawn that GBDT is a more effective method to integrate the forecasting result than traditional heuristic algorithms;MAE values of the proposed model on 3 PM_(2.5) series are 1.587,1.718 and 1.327μg/m3,respectively and the proposed model achieves more accurate results for all experiments than sixteen alternative forecasting models which contain three state-of-the-art models. 展开更多
关键词 PM_(2.5)forecasting variational mode decomposition deep neural network ensemble learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部