In order to further reduce the sulfur content in liquid hydrocarbon fuels,a desulfurization process by adsorption for removing alkyl dibenzothiophenes was investigated.Desulfurization of model gasoline by bentonite ad...In order to further reduce the sulfur content in liquid hydrocarbon fuels,a desulfurization process by adsorption for removing alkyl dibenzothiophenes was investigated.Desulfurization of model gasoline by bentonite adsorbents loaded with silver nitrate was studied.The test results indicated that the bentonite adsorbents loaded with Ag + ions were effective for adsorbing the alkyl dibenzothiophenes.The crystal structure of bentonite adsorbents was characterized by X-ray diffraction (XRD) and their acidity was measured by Fourier transform infrared (FT-IR) spectroscopy.Several factors influencing the desulfurization capability,including the Ag + loading,the baking temperature,as well as the reaction temperature,were investigated.The desulfurization efficiency was enhanced by increasing the Ag + loading and the best result was obtained at a silver loading of 7 m%.It was found that the adsorption capacity of the alkyl dibenzothiophenes on bentonite loaded with Ag + ions increased with a decreasing temperature.Baking of the adsorbent could also improve the desulfurization capacity,and the optimum baking temperature was 423 K.展开更多
Diatomite-dispersed NiMoW catalyst was prepared and characterized,and the activity of catalyst samples was tested during the HDS reaction of FCC diesel.Sulfur compounds in the feedstock and the hydrogenated products o...Diatomite-dispersed NiMoW catalyst was prepared and characterized,and the activity of catalyst samples was tested during the HDS reaction of FCC diesel.Sulfur compounds in the feedstock and the hydrogenated products obtained over different catalysts were determined by GC-PFPD.The test results showed that the diatomite-dispersed NiMoW catalyst had high hydrodesulfurization activity for FCC diesel,which could be contributed to the excellent hydrogenation performance of the said catalyst.Characterization of catalyst by TEM and XRD indicated that the diatomite-dispersed NiMoW catalyst possessed higher layer stacking,larger curvature of MoS2or WS2,and segregated Ni3S2crystals relative to the supported catalyst.This kind of structure leads to high hydrogenation activity of the diatomite-dispersed NiMoW catalyst.展开更多
文摘In order to further reduce the sulfur content in liquid hydrocarbon fuels,a desulfurization process by adsorption for removing alkyl dibenzothiophenes was investigated.Desulfurization of model gasoline by bentonite adsorbents loaded with silver nitrate was studied.The test results indicated that the bentonite adsorbents loaded with Ag + ions were effective for adsorbing the alkyl dibenzothiophenes.The crystal structure of bentonite adsorbents was characterized by X-ray diffraction (XRD) and their acidity was measured by Fourier transform infrared (FT-IR) spectroscopy.Several factors influencing the desulfurization capability,including the Ag + loading,the baking temperature,as well as the reaction temperature,were investigated.The desulfurization efficiency was enhanced by increasing the Ag + loading and the best result was obtained at a silver loading of 7 m%.It was found that the adsorption capacity of the alkyl dibenzothiophenes on bentonite loaded with Ag + ions increased with a decreasing temperature.Baking of the adsorbent could also improve the desulfurization capacity,and the optimum baking temperature was 423 K.
基金support of National Natural Science Foundation of China(Grant No.21306106)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.2012371812012)China Postdoctoral Science Foundation(Grant No.2012M541941)
文摘Diatomite-dispersed NiMoW catalyst was prepared and characterized,and the activity of catalyst samples was tested during the HDS reaction of FCC diesel.Sulfur compounds in the feedstock and the hydrogenated products obtained over different catalysts were determined by GC-PFPD.The test results showed that the diatomite-dispersed NiMoW catalyst had high hydrodesulfurization activity for FCC diesel,which could be contributed to the excellent hydrogenation performance of the said catalyst.Characterization of catalyst by TEM and XRD indicated that the diatomite-dispersed NiMoW catalyst possessed higher layer stacking,larger curvature of MoS2or WS2,and segregated Ni3S2crystals relative to the supported catalyst.This kind of structure leads to high hydrogenation activity of the diatomite-dispersed NiMoW catalyst.