期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
阅读也要利其器--阅读方法的意义与主要类型
1
作者 张怀涛 《图书馆学刊》 2018年第11期1-8,13,共9页
阅读方法是指读者在阅读活动中采用的方式与办法。读者在阅读活动中,如果注意充分把握和利用阅读方法,会有助于提升阅读效率和阅读效果。针对读者遇到的问题产生了4类阅读方法:广读法、深读法、速读法、联读法。笔者在自己日常阅读和讲... 阅读方法是指读者在阅读活动中采用的方式与办法。读者在阅读活动中,如果注意充分把握和利用阅读方法,会有助于提升阅读效率和阅读效果。针对读者遇到的问题产生了4类阅读方法:广读法、深读法、速读法、联读法。笔者在自己日常阅读和讲授"阅读学"课程时,比较关注阅读方法的搜集与整理,并曾在《秘书工作》(2011年第3期)上发表了这方面的初步成果《读书之法读中来》。近日笔者又对阅读方法进行重新审视,并加以丰富和调整。 展开更多
关键词 阅读方法 广读法 深读法 读法 读法
下载PDF
Machine-learning-aided precise prediction of deletions with next-generation sequencing
2
作者 管瑞 髙敬阳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3239-3247,共9页
When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is l... When detecting deletions in complex human genomes,split-read approaches using short reads generated with next-generation sequencing still face the challenge that either false discovery rate is high,or sensitivity is low.To address the problem,an integrated strategy is proposed.It organically combines the fundamental theories of the three mainstream methods(read-pair approaches,split-read technologies and read-depth analysis) with modern machine learning algorithms,using the recipe of feature extraction as a bridge.Compared with the state-of-art split-read methods for deletion detection in both low and high sequence coverage,the machine-learning-aided strategy shows great ability in intelligently balancing sensitivity and false discovery rate and getting a both more sensitive and more precise call set at single-base-pair resolution.Thus,users do not need to rely on former experience to make an unnecessary trade-off beforehand and adjust parameters over and over again any more.It should be noted that modern machine learning models can play an important role in the field of structural variation prediction. 展开更多
关键词 next-generation sequencing deletion prediction sensitivity false discovery rate feature extraction machine learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部