Consolidated-isotropically undrained triaxial compression (CIUC) tests were performed on the reconstituted deep clay from a mine in East China. It was consolidated to maximum stresses in the range of 0.3-2.6 MPa. Th...Consolidated-isotropically undrained triaxial compression (CIUC) tests were performed on the reconstituted deep clay from a mine in East China. It was consolidated to maximum stresses in the range of 0.3-2.6 MPa. The test results show that the stress-strain-strength properties of the clay during undrained shear are significantly stress-dependent. In particular, in the case of high consolidation pressure, the post-peak drop in strength on stress-strain curves and shear plane in soil specimens are more evident, the peak stress ratio and the axial strain at which this ratio was reached are smaller, and the relationship between pore pressure and axial strain is also significantly different from that for the case of low consolidation pressure. The environmental scanning electron microscope observations and micro analysis lead to an understanding of the physical mechanisms underlying the above stress-dependent mechanical behavior. In addition, the CIUC behaviors of the studied clay are discussed in the context of critical state soil mechanics.展开更多
基金the National Natural Science Foundation of China,the Ministry of Science and Technology of China
文摘Consolidated-isotropically undrained triaxial compression (CIUC) tests were performed on the reconstituted deep clay from a mine in East China. It was consolidated to maximum stresses in the range of 0.3-2.6 MPa. The test results show that the stress-strain-strength properties of the clay during undrained shear are significantly stress-dependent. In particular, in the case of high consolidation pressure, the post-peak drop in strength on stress-strain curves and shear plane in soil specimens are more evident, the peak stress ratio and the axial strain at which this ratio was reached are smaller, and the relationship between pore pressure and axial strain is also significantly different from that for the case of low consolidation pressure. The environmental scanning electron microscope observations and micro analysis lead to an understanding of the physical mechanisms underlying the above stress-dependent mechanical behavior. In addition, the CIUC behaviors of the studied clay are discussed in the context of critical state soil mechanics.