VOF (volume of fluid) method has been used to make the numerical simulation of freak wave come true. The comparisons between the numerical results and linear theoretical results corresponding to Eq.(5) have been c...VOF (volume of fluid) method has been used to make the numerical simulation of freak wave come true. The comparisons between the numerical results and linear theoretical results corresponding to Eq.(5) have been carried out to show that the numerical results have a better exhibition of nonlinear characteristics. Wavelet analysis method has been adopted to investigate the time-frequency energy spectrum of simulation freak waves and the results reveal strong nonlinear interaction enables energy to be transferred to high harmonics during the progress of its formation. Varying water depth can enhance the nonlinear interaction, making much more energy be transferred to high harmonics and freak waves with higher asymmetry be generated.展开更多
Networks are a class of general systems represented by becomes a weighted graph visualizing the constraints imposed their UC-structure. Suppressing the nature of elements the network by interconnections rather than th...Networks are a class of general systems represented by becomes a weighted graph visualizing the constraints imposed their UC-structure. Suppressing the nature of elements the network by interconnections rather than the elements themselves. These constraints follow generalized Kirchhoff's laws derived from physical constraints. Once we have a graph; then the working environment becomes the graph-theory. An algorithm derived from graph theory is developed within the paper in order to analyze general networks. The algorithm is based on computing all the spanning trees in the graph G with an associated weight. This weight is the product ofadmittance's of the edges forming the spanning tree. In the first phase this algorithm computes a depth first spanning tree together with its cotree. Both are used as parents for controlled generation of off-springs. The control is represented in selecting the off-springs that were not generated previously. While the generation of off-springs, is based on replacement of one or more tree edges by cycle edges corresponding to cotree edges. The algorithm can generate a frequency domain analysis of the network.展开更多
文摘VOF (volume of fluid) method has been used to make the numerical simulation of freak wave come true. The comparisons between the numerical results and linear theoretical results corresponding to Eq.(5) have been carried out to show that the numerical results have a better exhibition of nonlinear characteristics. Wavelet analysis method has been adopted to investigate the time-frequency energy spectrum of simulation freak waves and the results reveal strong nonlinear interaction enables energy to be transferred to high harmonics during the progress of its formation. Varying water depth can enhance the nonlinear interaction, making much more energy be transferred to high harmonics and freak waves with higher asymmetry be generated.
文摘Networks are a class of general systems represented by becomes a weighted graph visualizing the constraints imposed their UC-structure. Suppressing the nature of elements the network by interconnections rather than the elements themselves. These constraints follow generalized Kirchhoff's laws derived from physical constraints. Once we have a graph; then the working environment becomes the graph-theory. An algorithm derived from graph theory is developed within the paper in order to analyze general networks. The algorithm is based on computing all the spanning trees in the graph G with an associated weight. This weight is the product ofadmittance's of the edges forming the spanning tree. In the first phase this algorithm computes a depth first spanning tree together with its cotree. Both are used as parents for controlled generation of off-springs. The control is represented in selecting the off-springs that were not generated previously. While the generation of off-springs, is based on replacement of one or more tree edges by cycle edges corresponding to cotree edges. The algorithm can generate a frequency domain analysis of the network.