In this paper, two schemes for teleporting an unknown three-particle three-level entangled state are proposed. In the first scheme, two partial three-particle three-level entangled states are used as the quantum chann...In this paper, two schemes for teleporting an unknown three-particle three-level entangled state are proposed. In the first scheme, two partial three-particle three-level entangled states are used as the quantum channels, while in the second scheme, three two-particle three-level non-maximally entangled states are employed as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both two schemes, ira receiver adopts some appropriate unitary transformations. It is shown also that the successful probabilities of these two schemes are different.展开更多
A kind of three-particle entangled state is applied as quantum channel of the controlled quantum teleporration of a one-particle unknown state. The one-particle unknown state is transmitted from the sender to the reci...A kind of three-particle entangled state is applied as quantum channel of the controlled quantum teleporration of a one-particle unknown state. The one-particle unknown state is transmitted from the sender to the recipient under the control of the supervisor. After the sender makes Bell-state measurement and the supervisor performs von Neumann measurement, the recipient carries out unitary transformation on his own particle depending on classical information from the sender and the supervisor. The teleportation cannot be completed successfully by the recipient if the supervisor does not agree to cooperate. The roles of the recipient and the supervisor may be exchanged in this scheme. The scheme is flexible and feasible because the sequence of manipulation of the sender and the supervisor may be exchanged and only simple unitary transformation is included.展开更多
We propose a scheme for generating a maximally entangled state of two three-level superconducting quantum interference devices (SQUIDs) by using a quantized cavity field and classical microwave pluses in cavity. In ...We propose a scheme for generating a maximally entangled state of two three-level superconducting quantum interference devices (SQUIDs) by using a quantized cavity field and classical microwave pluses in cavity. In this scheme, no quantum information will be transferred from the SQUIDs to the cavity since the cavity field is only virtually excited. Thus, the cavity decay is suppressed during the entanglement generation.展开更多
A scheme is proposed for the generation of two-atom maximally entangled states and multi-atom maximally entangled states of W class. The scheme is based on the simultaneous resonant interaction of atoms with a single-...A scheme is proposed for the generation of two-atom maximally entangled states and multi-atom maximally entangled states of W class. The scheme is based on the simultaneous resonant interaction of atoms with a single-mode cavity field. It does not require accurate adjustment of the interaction time. The time needed to complete the generation does not increase with the number of the atom.展开更多
A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W st...A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W states. An unknown three-particle GHZ state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and the Hadamard operation while either one of two receivers introduces an ancillary particle which is one of the final three particle constituting the teleported state, then performs the controlled-not operation with the ancillary particle as the target bit and introduces an appropriate unitary transformation with the help of the other receiver's simple measurements. All kinds of unitary transformations are given in detail. The present scheme may be directly generalized to teleport an unknown multiparticle GHZ state via two three-particle entangled W states used as the quantum channel.展开更多
Teleportation schemes with a five-atom entangled state are investigated. In the teleportation scheme Bell state measurements (BSMs) are difficult for physical realization, so we investigate another strategy using se...Teleportation schemes with a five-atom entangled state are investigated. In the teleportation scheme Bell state measurements (BSMs) are difficult for physical realization, so we investigate another strategy using separate measurements instead of BSM based on cavity quantum electrodynamics techniques. The scheme of two-atom entangled state teleportation is a controlled and probabilistic one. For the teleportation of the three-atom entangled state, the scheme is a probabilistic one. The fidelity and the probability of the successful teleportation are also obtained.展开更多
With the help of Bose operator identities and entangled state representation and based on our previous work.[Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel funct...With the help of Bose operator identities and entangled state representation and based on our previous work.[Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel function as their solution. It means that for these intricate higher-order differential equations, we can get Bessel function solutions without using the expatiatory power-series expansion method.展开更多
Based on our preceding works of how to relate the mathematical Hankel transform to quantum mechanical representation transform and how to express the Bessel equation by an operator identity in some appropriate represe...Based on our preceding works of how to relate the mathematical Hankel transform to quantum mechanical representation transform and how to express the Bessel equation by an operator identity in some appropriate representations we propose the concept of quantum mechanical Hankel transform with regard to quantum state vectors. Then we discuss its new applications.展开更多
A system comprising of Lambda-type three-level atoms and the two-mode cavity field is considered in this paper. Under the acliabatical approximation and the large detuning condition, the effective Hamiltonian of the s...A system comprising of Lambda-type three-level atoms and the two-mode cavity field is considered in this paper. Under the acliabatical approximation and the large detuning condition, the effective Hamiltonian of the system in the interaction picture can be given out. If the two identical three-level atoms pass through the cavity in turn, the entangled state atoms can be generated. When the interaction time is taken to an appropriate value, the maximally entangled states are created. At the same time, the dynamic behaviors of the system are studied in detail.展开更多
By extending the EPR bipartite entanglement to multipartite case, we briefly introduce a continuous multipartite entangled representation and its canonical conjugate state in the multi-mode Fock space, analyze their S...By extending the EPR bipartite entanglement to multipartite case, we briefly introduce a continuous multipartite entangled representation and its canonical conjugate state in the multi-mode Fock space, analyze their Schmidt decompositions and give their entangling operators. Furthermore, based on the above analysis we also find the n-mode Wigner operator. In doing so we may identify the physical meaning of the marginal distribution of the Wigner function.展开更多
基金The project supported by the Natural Science Foundation of Education Bureau of Jingsu Province of China under Grant No. 04KJB140014
文摘In this paper, two schemes for teleporting an unknown three-particle three-level entangled state are proposed. In the first scheme, two partial three-particle three-level entangled states are used as the quantum channels, while in the second scheme, three two-particle three-level non-maximally entangled states are employed as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both two schemes, ira receiver adopts some appropriate unitary transformations. It is shown also that the successful probabilities of these two schemes are different.
基金The project supported by National Natural Science Foundation of China under Grant No. 10647101
文摘A kind of three-particle entangled state is applied as quantum channel of the controlled quantum teleporration of a one-particle unknown state. The one-particle unknown state is transmitted from the sender to the recipient under the control of the supervisor. After the sender makes Bell-state measurement and the supervisor performs von Neumann measurement, the recipient carries out unitary transformation on his own particle depending on classical information from the sender and the supervisor. The teleportation cannot be completed successfully by the recipient if the supervisor does not agree to cooperate. The roles of the recipient and the supervisor may be exchanged in this scheme. The scheme is flexible and feasible because the sequence of manipulation of the sender and the supervisor may be exchanged and only simple unitary transformation is included.
基金The project supported in part by National Natural Science Foundation of China under Grant No. 60478029
文摘We propose a scheme for generating a maximally entangled state of two three-level superconducting quantum interference devices (SQUIDs) by using a quantized cavity field and classical microwave pluses in cavity. In this scheme, no quantum information will be transferred from the SQUIDs to the cavity since the cavity field is only virtually excited. Thus, the cavity decay is suppressed during the entanglement generation.
基金The project supported by Natural Science Foundation of Fujian Province of China under Grant No. JB05065
文摘A scheme is proposed for the generation of two-atom maximally entangled states and multi-atom maximally entangled states of W class. The scheme is based on the simultaneous resonant interaction of atoms with a single-mode cavity field. It does not require accurate adjustment of the interaction time. The time needed to complete the generation does not increase with the number of the atom.
基金The project supported by National Natural Science Foundation of Chins under Grant No. 10574022 and the Natural Science Foundation of Fujian Province of China under Grant No. Z0512006
文摘A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W states. An unknown three-particle GHZ state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and the Hadamard operation while either one of two receivers introduces an ancillary particle which is one of the final three particle constituting the teleported state, then performs the controlled-not operation with the ancillary particle as the target bit and introduces an appropriate unitary transformation with the help of the other receiver's simple measurements. All kinds of unitary transformations are given in detail. The present scheme may be directly generalized to teleport an unknown multiparticle GHZ state via two three-particle entangled W states used as the quantum channel.
基金The project supported by Natural Science Foundation of Anhui Province of China under Grant No. 03042401, the Key Program of the Education Department of Anhui Province under Grant Nos. 2002kj029zd, 2004kj005zd, and the Talent Foundation of Anhui University
文摘Teleportation schemes with a five-atom entangled state are investigated. In the teleportation scheme Bell state measurements (BSMs) are difficult for physical realization, so we investigate another strategy using separate measurements instead of BSM based on cavity quantum electrodynamics techniques. The scheme of two-atom entangled state teleportation is a controlled and probabilistic one. For the teleportation of the three-atom entangled state, the scheme is a probabilistic one. The fidelity and the probability of the successful teleportation are also obtained.
基金The project supported by National Natural Science Foundation of China and the President Foundation of the Chinese Academy of Sciences
文摘With the help of Bose operator identities and entangled state representation and based on our previous work.[Phys. Lett. A 325 (2004) 188] we derive some new generalized Bessel equations which also have Bessel function as their solution. It means that for these intricate higher-order differential equations, we can get Bessel function solutions without using the expatiatory power-series expansion method.
基金The project supported by the President Foundation of the Chinese Academy of Sciences and the National Natural Science Foundation of China under Grant No. 10574060
文摘Based on our preceding works of how to relate the mathematical Hankel transform to quantum mechanical representation transform and how to express the Bessel equation by an operator identity in some appropriate representations we propose the concept of quantum mechanical Hankel transform with regard to quantum state vectors. Then we discuss its new applications.
基金The project supported by the National Fundamental Research Program of China under Grant No. 2001CB309300, National Natural Science Foundation of China under Grant No. 10204020, and the Innovation Funds of the Chinese Academy of Sciences
文摘A system comprising of Lambda-type three-level atoms and the two-mode cavity field is considered in this paper. Under the acliabatical approximation and the large detuning condition, the effective Hamiltonian of the system in the interaction picture can be given out. If the two identical three-level atoms pass through the cavity in turn, the entangled state atoms can be generated. When the interaction time is taken to an appropriate value, the maximally entangled states are created. At the same time, the dynamic behaviors of the system are studied in detail.
文摘By extending the EPR bipartite entanglement to multipartite case, we briefly introduce a continuous multipartite entangled representation and its canonical conjugate state in the multi-mode Fock space, analyze their Schmidt decompositions and give their entangling operators. Furthermore, based on the above analysis we also find the n-mode Wigner operator. In doing so we may identify the physical meaning of the marginal distribution of the Wigner function.