In this paper we introduce two sequences of operator functions and their dualfunctions: fk(t) = (flogt)k-(t-1)k/log^k+2t (k = 1,2,...), gk(t) = (t-1)k-logkt /log^k+1t (k = 1,2,...) and fk(t)tklog^k...In this paper we introduce two sequences of operator functions and their dualfunctions: fk(t) = (flogt)k-(t-1)k/log^k+2t (k = 1,2,...), gk(t) = (t-1)k-logkt /log^k+1t (k = 1,2,...) and fk(t)tklog^k+1t/(tlogt)k-(t-1)^k(k=1,2…),gk(t)=t^klog^k+1t/(t-1)^k-log^kt(k=1,2…)defined onWe find that they are all operator monotone functions with respect to the strictly chaoticorder and some ordinary orders among positive invertible operators. Indeed, we extend theresults of the operator monotone function tlogt-t+1/log^2t which is widely used in the theory of heat transfer of the heat engineering and fluid mechanics[1].展开更多
文摘In this paper we introduce two sequences of operator functions and their dualfunctions: fk(t) = (flogt)k-(t-1)k/log^k+2t (k = 1,2,...), gk(t) = (t-1)k-logkt /log^k+1t (k = 1,2,...) and fk(t)tklog^k+1t/(tlogt)k-(t-1)^k(k=1,2…),gk(t)=t^klog^k+1t/(t-1)^k-log^kt(k=1,2…)defined onWe find that they are all operator monotone functions with respect to the strictly chaoticorder and some ordinary orders among positive invertible operators. Indeed, we extend theresults of the operator monotone function tlogt-t+1/log^2t which is widely used in the theory of heat transfer of the heat engineering and fluid mechanics[1].