Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the ...Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.展开更多
An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concret...An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concrete strengths of the columns were 30 MPa and 60 MPa.The primary variables considered were the concrete strength and the amount of transversereinforcement. Test results indicate that smaller hoop spacing provides higher column capacity andgreater strength enhancement in a confined concrete core of columns. For the same lateralconfinement, high strength concrete columns develop lower strength enhancement than normal strengthconcrete columns. Both the strength enhancement ratio (f'_(cc) /f'_(co)) and the column capacityratio (P_(test)/P_o) were observed to show linear increase variations with rho_s f_(yt)/f'_c incircular columns.展开更多
Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embed...Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embedded in concrete. Two kinds of conventional reinforcing rebars were also studied for comparison. Each rebar was embedded in a 150 mm concrete cube,with the embedded length being four times the rebar diameter. The experimental parameters were the rebar type,rebar component,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the bond strength of GFRP rebars was about 13%~35% lower than that of steel rebars. The bond strength and bond-slip behavior of the specially machined rebars varied with the rebar type,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Using the results,design recom-mendations were made concerning optimum rib geometries of GFRP ribbed rebars with superior bond-slip characteristics,which concluded that the optimal rib spacing of ribbed rebars is the same as the rebar diameter,and that the optimal rib height is 6% of the rebar diameter.展开更多
Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHT...Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHTCC) on improving the flexural behavior of existing RC beams.The strengthening materials included UHTCC and high strength grade concrete.The parameters,such as thickness and length of strengthening layer and reinforcement in post-poured layer,were analyzed.The flexural behavior,failure mode and crack propagation of composite beams were investigated.The test results show that the strengthening layer improves the cracking and ultimate load by increasing the cross section area.Introducing UHTCC material into strengthening not only improves the bearing capacity of the original specimens,but also disperses larger cracks in upper concrete into multiple tightly-spaced fine cracks,thus prolonging the appearance of harm surface cracks and increasing the durability of existing structures.Compared with post-poured concrete,UHTCC is more suitable for working together with reinforcement.The load?deflection plots obtained from three-dimensional finite-element model (FEM) analyses are compared with those obtained from the experimental results,and show close correlation.展开更多
This paper mainly described five kinds of common detection methods, including the test block method, core drilling method, rebound method, dialing out method and ultrasonic testing method and systematically analyzed t...This paper mainly described five kinds of common detection methods, including the test block method, core drilling method, rebound method, dialing out method and ultrasonic testing method and systematically analyzed the mechanism of all kinds of concrete strength detection methods as well as their advantages and disadvantages, which would provide a guide for construction personnel and research institutions to choose an economical ,accurate and safe detection method.展开更多
Many researchers have investigated the use of recycled tire products in several traditional civil engineering materials. This research is exploring the use of steel cords, a by-product of the tire recycling process, i...Many researchers have investigated the use of recycled tire products in several traditional civil engineering materials. This research is exploring the use of steel cords, a by-product of the tire recycling process, in concrete mixes. Different concrete specimens were fabricated and tested in uniaxial compression and splitting tensile strength. The steel cords were substituted into the concrete mix in volumetric percentages of various ratios. Results show that mechanical properties of concrete made with steel cords are improved compared with concrete mix made with the traditional scrap-tires recycled material. Also, results show that even though the compressive strength is reduced when using steel cords, this reduction is minimal. When 2% of steel cords are used there is 18% increase in ductility. Moreover, splitting tensile tests show that concrete mixtures with any steel cords content have much greater toughness than control mixture. This mechanical property mix indicates an excellent potential application of modified concrete mix in structures that absorb large amount of energy.展开更多
文摘Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application.
文摘An experimental study, in which six columns were loaded concentrically toinvestigate the behavior of reinforced normal strength and high strength circular columns underconcentric compression, is described. The concrete strengths of the columns were 30 MPa and 60 MPa.The primary variables considered were the concrete strength and the amount of transversereinforcement. Test results indicate that smaller hoop spacing provides higher column capacity andgreater strength enhancement in a confined concrete core of columns. For the same lateralconfinement, high strength concrete columns develop lower strength enhancement than normal strengthconcrete columns. Both the strength enhancement ratio (f'_(cc) /f'_(co)) and the column capacityratio (P_(test)/P_o) were observed to show linear increase variations with rho_s f_(yt)/f'_c incircular columns.
基金Project (No. 200431882021) supported by the Western Communi-cation Construction and Science & Technological Project,China
文摘Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embedded in concrete. Two kinds of conventional reinforcing rebars were also studied for comparison. Each rebar was embedded in a 150 mm concrete cube,with the embedded length being four times the rebar diameter. The experimental parameters were the rebar type,rebar component,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the bond strength of GFRP rebars was about 13%~35% lower than that of steel rebars. The bond strength and bond-slip behavior of the specially machined rebars varied with the rebar type,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Using the results,design recom-mendations were made concerning optimum rib geometries of GFRP ribbed rebars with superior bond-slip characteristics,which concluded that the optimal rib spacing of ribbed rebars is the same as the rebar diameter,and that the optimal rib height is 6% of the rebar diameter.
基金Project(50438010) supported by the National Natural Science Foundation of China
文摘Four-point bending tests were conducted up to failure on eleven reinforced concrete (RC) beams and strengthening beams to study the effectiveness of externally pouring ultra high toughness cementitious composites (UHTCC) on improving the flexural behavior of existing RC beams.The strengthening materials included UHTCC and high strength grade concrete.The parameters,such as thickness and length of strengthening layer and reinforcement in post-poured layer,were analyzed.The flexural behavior,failure mode and crack propagation of composite beams were investigated.The test results show that the strengthening layer improves the cracking and ultimate load by increasing the cross section area.Introducing UHTCC material into strengthening not only improves the bearing capacity of the original specimens,but also disperses larger cracks in upper concrete into multiple tightly-spaced fine cracks,thus prolonging the appearance of harm surface cracks and increasing the durability of existing structures.Compared with post-poured concrete,UHTCC is more suitable for working together with reinforcement.The load?deflection plots obtained from three-dimensional finite-element model (FEM) analyses are compared with those obtained from the experimental results,and show close correlation.
文摘This paper mainly described five kinds of common detection methods, including the test block method, core drilling method, rebound method, dialing out method and ultrasonic testing method and systematically analyzed the mechanism of all kinds of concrete strength detection methods as well as their advantages and disadvantages, which would provide a guide for construction personnel and research institutions to choose an economical ,accurate and safe detection method.
文摘Many researchers have investigated the use of recycled tire products in several traditional civil engineering materials. This research is exploring the use of steel cords, a by-product of the tire recycling process, in concrete mixes. Different concrete specimens were fabricated and tested in uniaxial compression and splitting tensile strength. The steel cords were substituted into the concrete mix in volumetric percentages of various ratios. Results show that mechanical properties of concrete made with steel cords are improved compared with concrete mix made with the traditional scrap-tires recycled material. Also, results show that even though the compressive strength is reduced when using steel cords, this reduction is minimal. When 2% of steel cords are used there is 18% increase in ductility. Moreover, splitting tensile tests show that concrete mixtures with any steel cords content have much greater toughness than control mixture. This mechanical property mix indicates an excellent potential application of modified concrete mix in structures that absorb large amount of energy.