混凝土坝施工管理知识多以文本的形式记录存储,具有数据量大、碎片化严重、层次性差等特点。本文从非结构化文本数据中智能挖掘施工知识,理清知识间的逻辑关系,提升知识的应用效率是混凝土坝施工管理面临的重要问题。本文提出一种混凝...混凝土坝施工管理知识多以文本的形式记录存储,具有数据量大、碎片化严重、层次性差等特点。本文从非结构化文本数据中智能挖掘施工知识,理清知识间的逻辑关系,提升知识的应用效率是混凝土坝施工管理面临的重要问题。本文提出一种混凝土坝施工管理知识图谱智能生成方法,将海量文本数据转化为可直接利用的知识。融合字词向量、BiLSTM-CRF(Bi-directional Long Short-Term Memory-Conditional Random Field)网络、Attention机制,建立混凝土坝施工管理实体智能识别模型,强化施工实体特征,获取混凝土坝施工管理文本中的实体词语。结合已识别的施工实体,定义实体间关系类型,利用互信息提取实体关系,组合形成施工知识链,构建混凝土坝施工管理知识图谱。该方法应用于实际混凝土坝施工管理文本分析中,经过计算得到混凝土坝施工管理实体智能识别模型的F1值为92.48%,优于其他实体识别模型;利用已识别实体间的关联关系,建立了混凝土坝施工管理知识图谱,形成基于知识图谱的施工知识检索机制,实现施工知识的快速提取,提高了施工知识的应用效率。展开更多
文摘混凝土坝施工管理知识多以文本的形式记录存储,具有数据量大、碎片化严重、层次性差等特点。本文从非结构化文本数据中智能挖掘施工知识,理清知识间的逻辑关系,提升知识的应用效率是混凝土坝施工管理面临的重要问题。本文提出一种混凝土坝施工管理知识图谱智能生成方法,将海量文本数据转化为可直接利用的知识。融合字词向量、BiLSTM-CRF(Bi-directional Long Short-Term Memory-Conditional Random Field)网络、Attention机制,建立混凝土坝施工管理实体智能识别模型,强化施工实体特征,获取混凝土坝施工管理文本中的实体词语。结合已识别的施工实体,定义实体间关系类型,利用互信息提取实体关系,组合形成施工知识链,构建混凝土坝施工管理知识图谱。该方法应用于实际混凝土坝施工管理文本分析中,经过计算得到混凝土坝施工管理实体智能识别模型的F1值为92.48%,优于其他实体识别模型;利用已识别实体间的关联关系,建立了混凝土坝施工管理知识图谱,形成基于知识图谱的施工知识检索机制,实现施工知识的快速提取,提高了施工知识的应用效率。